MTH401 MID TERM PAST PAPERS (FILE PART II) SOLVED

BY MASOOM FAIRY

Note:

- I could not make Neat File due to Much Load shedding.
- There is an other file because of Large size of this one.

MTH401 Deferential Equations

Mid Term Examination - Spring 2006
Time Allowed: 90 Minutes

The method of undetermined coefficient is limited to homogeneous linear differential equation
5 True
(5) False Page 148

The Method of Undetermined Coefficient

[^0]The method of undetermined coefficients developed here is limited to nonhomogeneous linear differential equations

May 23, 2013 MTH401 MID TERM PAPERS SOLVED WITH REFRENCES BY MASOOM FAIRY

Question No. 2

In the homogeneous differential equation after substitution $v=y / x$ the equation reduces to.
(5) Separable differential equation.
(5) Exact differential equation. Lecture 5

5 Remain homogeneous equation.
(5) None of the other

Question No. 7

Marks : 1

If the Wronskian W of three function $\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x}), \mathrm{h}(\mathrm{x})$ is zero, what can be said about the dependency of the functions

May 23, 2013 MTH401 MID TERM PAPERS SOLVED WITH REFRENCES BY MASOOM FAIRY
(5) May or may not be dependent
page 113
(5) Always dependent
(5) Never dependent
(5) None of the other

A Vanishing Wronskian does not guarantee linear dependence of functions.

Question No. 8

Marks : 1
$a_{n}(x)=0$
If \quad in the differential equation
$a(x) \underline{\underline{d^{n} y} y}+a \quad(x) d^{n-1} y+a \quad(x) d^{n-2} y+\ldots .+a(x) \underline{d y}+a(x) y=g(x)$
$\quad d x^{n} \quad d x^{n-1} \quad d x$
for some $x I$ then
I. Solution of initial value problem may not unique.
II. \quad Solution of initial value problem may not even exist.
III. Solution of initial value problem should exist.
IV. \quad Solution of initial value problem is unique.

5 I is correct only
5 I and II are correct
5 I and III are correct
(5) IV is correct only

Question No. 9
Marks : 1

(5) First order linear differential equation
(5) Bernoulli equation
(5) Separable equation

5 None of the other.

According to all above equations.

FINALTERM EXAMINATION FALL 2006
 MTH401 - DIFFERENTIAL EQUATIONS (Session - 1)

Q: 1: If the variation of the path of the curves can be described by the concept of differential equations

$$
y \text { axis }
$$

then which of the following differential equation describe the path for

$$
\begin{gathered}
\underline{d y}=1 \\
d x
\end{gathered}
$$

Not confirm

- $\underline{d y}=-1$
$d x$
- $\underline{d y}=\infty$
$d x$
Q: 2: Suggestive form of the constant input function for the non homogeneous differential equation under the method entitled as "Method of the undetermined coefficient" is

$$
1 \quad f(x)=e^{x}
$$

$2 f(x)=a$
3

$$
f(x)=e^{a x}(A \operatorname{Cos} x+B \operatorname{Sin} x)
$$

4

Suggestive form is impossible. PAGE 148

e_{x}

Q: 3: Which of the following function is linearly dependant to the exponential function ?
$-e^{x}$
$>e^{-x}$ not confirm

- $x e^{x}$
$-x e^{-x}$

Q: 4: Eigen values for the system of the differential equations

$$
X=A X
$$

are evaluated for the

Solution vector

Coefficient matrix

Differentiated solution vector

Transpose of the Coefficient matrix

May 23, 2013 MTH401 MID TERM PAPERS SOLVED WITH REFRENCES BY MASOOM FAIRY

$$
X_{1}, X_{2}, \quad, X_{n}
$$

Q: 5: Fundamental set of the solution vectors equations are obtained by

- Taking derivative of the each solution vector and forming the set

May 23, 2013 MTH401 MID TERM PAPERS SOLVED WITH REFRENCES BY MASOOM FAIRY

- Taking Integral of the each solution vector and forming the set $\left\{\int X_{1} d x, \int X_{2} d x, \cdots \cdots, \int X_{n} d x\right\}$
- Just verifying their linear independance and establishing the set

$$
\left\{X_{1}, X_{2}, \cdots \cdots, X_{n}\right\}
$$

MID TERM EXAMINATION
SPRING 2007
MTH401_SESSION 4
Question No: 1 (Marks: 1) - Please choose one
The differential equation
$\left(3 x^{2} y+2\right) d x+\left(x^{3}+y\right) d y=0$ is

May 23, 2013 MTH401 MID TERM PAPERS SOLVED WITH REFRENCES BY MASOOM FAIRY

PAGE

Exact 26
Linear
Homogenous
Separable

Question No: 2 (Marks: 1) - Please choose one

The assumed particular solution for the U.C(Undetermined Coefficient) differential equation
$y^{\prime}-y=x^{2} e^{2 x}$
is
$y=c e^{x_{2}}+c x^{2}$
$y_{p}=(A x+B) e^{2 x}$
$y_{p}=\left(A x^{2}+B x+c\right) e^{2 x}$

None of these.
Question No: 3 (Marks: 1) - Please choose one
$x^{d y}+y=y^{2} \ln x$
$d x$
The differential equation
is an example of

Separable
Homogenous
Exact

None of these.

May 23, 2013 MTH401 MID TERM PAPERS SOLVED WITH REFRENCES BY MASOOM FAIRY

Question No: 4 (Marks: 1) - Please choose one
For the differential equation
$y-2 x y=x$
Integrating factor is
x^{2}
${ }^{\text {PAGE }} 34$
$e^{x^{2}}$
$-e^{x^{2}}$

- x^{2}

Question No: 5 (Marks: 1) - Please choose one
$\underline{d y}=x_{-}+3 y-5$
$d x \quad x-y-1$

Identify the ordinary differential equation

- Homogenous
- Separable

Exact PAGE 26

- None of these.

MIDTERM EXAMINATION
(Solution File)

SEMESTER SPRING 2004

MTH401- Differential Equations

Q: 1: The differential equation sec $y^{\underline{d y}}+\sin (x-y)=\sin (x+y)$ is

Separable PAGE 7

Q: 2: The integrating factor of the differential equation $\left(x^{2}+1\right)^{\underline{d y}} d x+2 x y=1$ is
PAG
$\Rightarrow x^{2}+134$

Q: 3: The form of the particular solution for the differential equation

$$
\begin{gathered}
y^{\prime \prime}-y=x^{4} \\
\rightarrow y=A x^{4}+A x^{3}+A x^{2}+A x+A \\
0
\end{gathered}
$$

Q: 4: Determine which of the given functions are linearly independent.
$\Rightarrow f_{1}(x)=1+x, f_{2}(x)=x, f_{2}(x)=x^{2}$
PAGE 110
Q: 5: The differential operator that annihilates $10 x^{3} 2 x$ is:
$\Rightarrow D^{4}$
L PAGE 167

Question No: 6

Solve the following differential equation by using an appropriate substitution.

$$
\frac{d y}{d x}=\frac{y}{x}+x-
$$

Solution

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{y}{x}+\frac{x}{y} \\
& \frac{d y}{d x}=\frac{y^{2}+x^{2}}{x y}
\end{aligned}
$$

Homogeneous equation, so put $y=v x, \quad \begin{gathered}a y \\ d x \\ d x\end{gathered} d x$

$$
v+x \frac{d v}{d x}=\frac{v^{2} x^{2}+x^{2}}{x^{2} v}
$$

$$
\frac{v+x}{d x}=v+\frac{1}{v}
$$

$$
x d v=1-\quad v d v=1
$$

$$
\int v d v=\int^{1} d x
$$

$$
v_{2}=\ln x+\ln
$$

C 2

Question No: 7
Marks:10
The population of a town grows at a rate proportional to the population at any time. Its initial population of 500 increases by 15% in 10 years. What will be the population in 30 years?

Solution:

May 23, 2013 MTH401 MID TERM PAPERS SOLVED WITH REFRENCES BY MASOOM FAIRY

Let $P(t)$ be the population at any time t , then rate of grows will be

$$
\begin{gathered}
d P \\
\frac{d P}{d t} \\
d t=k P
\end{gathered}
$$

Here k is constant of proportionality. Since initially population was 500 , therefore $P(0)=500$. Also this population $15(500)=75$, therefore population after 10 years is (initial population + increase in 10 years $)=500+75=575$ i.e. $P(10)=575$. So we have the boundary value problem

$$
\frac{d P}{d t} d t=k P \text { subject to boundary conditions } P(0)=500, P(10)=575 .
$$

This first order differential equation. Its solution is given by

$$
P=C e^{k t} \text { where } \mathrm{C} \text { is constant of integration. }
$$

Applying boundary conditions, we get $C=500, k=0.0139$. So the solution is

$$
P(t)=500 e^{(0.0139) t}
$$

Thus population after 30 years is obtained by putting $t=30$ in above equation i.e.

$$
\begin{gathered}
P(30)=500 e^{(0.0139) 30} \\
\approx 760 .
\end{gathered}
$$

Find a second solution of following differential equations where the first solution is given. You can use any method (reduction of order or formula given in handouts).

$$
x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y=0 ; y_{1}=x^{2}
$$

SEMESTER SPRING 2004 MTH401- Differential Equations

Question No: 1	Marks: 2
The differential equation $\underline{d y}=\underline{x+3 y}$ is $d x 3 x+y$	
Question No: 2	Marks: 2
The integrating factor of the differential equation $\frac{a y}{}-y=e^{3 x}$ is $d x$ E	
Question No: 3	Marks: 2
The form of the particular solution for the differential equation $y^{\prime}-y=\cos 2 x$ $y_{p}=A \cos 2 x+B \sin 2 x \quad \text { repeat }$	
Question No: 4	Marks:2
Determine which of the given functions are linearly independent. $\text { C } \quad f_{1}(x)=x, f_{2}(x)=x^{2}, f_{2}(x)=4 x-3 x^{2}$ Repeated	

The differential operator that annihilates $4 e^{x / 2}$ is:

C 2 D1

Question No: 6

Solve the following differential equations.

$$
1+\ln x+\frac{y}{x} d x=(1-\ln x) d y
$$

Solution:

Here

$$
\begin{aligned}
& M=1+\ln x+\begin{array}{c}
y \\
x
\end{array}, N=-(1-\ln x)
\end{aligned}
$$

So the given equation is an exact equation. Thus there exists a function $f(x, y)$ such that

$$
\begin{aligned}
& \text { (1) } f=x+x \ln x-x+y \ln x+H(y)=x \ln x+y \ln x+ \\
& H(y) \frac{\underline{\delta}}{\delta} \underset{y}{f}=\ln x+H^{\prime}(y) \\
& 6 \text { 2) } \ln x-1=\ln x+H^{\prime}(y) \\
& \text { 1. }-1=H^{\prime}(y) \\
& \text { 2. } H(y)=-y \\
& \text { Hence } f(x, y)=x \ln x+y \ln x-y
\end{aligned}
$$

May 23, 2013 MTH401 MID TERM PAPERS SOLVED WITH REFRENCES BY MASOOM FAIRY

Initially there were 100 milligrams of a radioactive substance present. After 6 hours the mass decreased by 3%. If the rate of decay is proportional to the amount of the substance present at any time, find the amount remaining after 24 hours.

Solution:

Let $A(t)$ be amount present at any time t. Then by given conditions, we have

$$
\begin{gathered}
d A \\
d t \\
\frac{d A}{d t}=k A
\end{gathered}
$$

Initially there were 100 milligrams, therefore $A(0)=100$. Moreover, decreased by 3% will give us 100
$-100^{3}(100)=97$ milligrams after 6 hours i.e. $A(6)=97$. So we have boundary value problem

$$
d A d t=k A \text { subject to boundary conditions } A(0)=100, A(6)=97
$$

The solution of this equation is given by

$$
A(t)=C e^{k t} \text { where } \mathrm{C} \text { is constant of integration. }
$$

Applying boundary conditions, we get

$$
\begin{gathered}
C=100, \quad k=-0.005076 \\
A(t)=100 e^{-0.005076 t}
\end{gathered}
$$

Amount remaining after 24 hours is obtained by putting $t=24$ in above equation i.e.

$$
\text { 2. } \begin{array}{r}
\quad A(t)=100 e^{-0.005076(24)} \\
188.529 \mathrm{mg} .
\end{array}
$$

Question No: 8

Find a second solution of following differential equations where the first solution is given. You can use any method (reduction of order or formula given in handouts).

$$
x^{2} y^{\prime \prime}+y^{\prime}=0 ; y_{1}=\ln x
$$

Solution:

Comparing this equation with $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$, we get

But second solution is given by

$$
y_{2}=y_{1 y^{2}} \quad e-\int_{u x} P(x) d x
$$

May 23, 2013 MTH401 MID TERM PAPERS SOLVED WITH REFRENCES BY MASOOM FAIRY

MIDTERM EXAMINATION (Solution File)

SEMESTER SPRING 2004
MTH401- Differential Equations

Question No: 1

The differential equation $(x+y)(x-y) d x+x(x-2 y) d y=0$ is

E Exact PAGE 26

Question No: 2
The integrating factor of the differential equation $\left(2 y^{2}+3 x\right) d x+2 x y d y=0$ is

B x not confirm

Question No: 3
The form of the particular solution for the differential equation

$$
y^{\prime \prime}-y=\cos x+e^{x} \text { is: }
$$

C

$$
y_{p}=A e^{x}+B \cos x+C \sin x \quad \text { Repeated }
$$

Question No: 4
Determine which of the given functions are linearly independent.
E

$$
f_{1}(x)=x, f_{2}(x)=x^{2}, f_{2}(x)=4 x-3 x^{2} \quad \text { REPEATED }
$$

May 23, 2013

MTH401 MID TERM PAPERS SOLVED WITH REFRENCES BY MASOOM FAIRY

The differential operator that annihilates $4 e^{2 x}$ is:

$\square(D-2)(D+5)$

Question No: 6

Find the general solution of the given differential equation.

$$
\frac{d y}{d x}+2 x y=x^{3}
$$

Solution:

It is of the form $\frac{d y}{d x+P(x) y=Q(x) \text { i.e. Linear First Order Differential Equation with }}$

$$
P(x)=2 x, Q(x)=x^{3}
$$

Thus integration factor is given by

$$
\begin{aligned}
I . F & =u(x)=e^{\mid p(x) d x} \\
& =e^{\int^{2 x d x}}=e^{x^{2}}
\end{aligned}
$$

But the solution in this case is

$$
y=\frac{\int_{u}(x) Q(x) d x+C}{u(x)}
$$

Now

$$
\begin{aligned}
\int u(x) Q(x) d x & =\int_{1} x^{3} e^{x_{2}} \\
& =\frac{1}{2}\left(e^{x_{2}} 2 x\right) x^{2} d x \\
& =\frac{1}{2}\left\{e^{x_{2}} x^{2}-\int e^{x_{2}} 2 x d x\right\} \quad \text { int egration by parts }
\end{aligned}
$$

May 23, 2013 MTH401 MID TERM PAPERS SOLVED WITH REFRENCES BY MASOOM FAIRY

$$
=12\left\{e^{x_{2}} x^{2}-e^{x_{2}}\right\}
$$

So the solution is

1 $\left\{x^{2}-1\right\} e^{x_{2}}+C$ $y=\frac{2}{e^{x}}$ $=\frac{1}{2} 2\left(x^{2}-1\right)+C e^{x_{2}}$	
Question No: 7	

Question No: 7
A thermometer is taken from an inside room to the outside where the air temperature is $5^{\circ} \mathrm{F}$. After 1 minute the thermometer reads $55^{\circ} \mathrm{F}$, and after 5 minutes the reading is $30^{\circ} \mathrm{F}$. What is the initial temperature of the room?

Solution:

Let $T(t)$ be temperature at any time t and T_{0} be the temperature of the surroundings. Then by Newton's Method, we know that

$$
\overline{d T}_{d t=k\left(T-T_{0}\right)}
$$

Where k is constant of proportionality. Here we are given $T_{0}=5$ and $T(1)=55, T(5)=30$. Solving above equation we get

$$
\begin{aligned}
& T=T_{0}+C e^{k t} \\
& 7 \quad T=5+C e^{k t}
\end{aligned}
$$

Using above conditions we get

$$
k=-0.173, C 59.44 .
$$

So the initial temperature is given by

$$
\begin{aligned}
& \quad=5+C e^{0} \\
& 5+C \\
& 5+59.44=64.44^{\circ} \mathrm{F} .
\end{aligned}
$$

MTH401 MID TERM PAST PAPERS (FILE PART II) SOLVED

BY MASOOM FAIRY

Note:

- I could not make Neat File due to Much Load shedding problem.
- There is an other file because of Large size of this one.

May 23, 2013 MTH401 MIID TERM PAPERS SOLVED WITH REFRENCES BY MASOOM FAIRY

[^0]: May 23, 2013 MTH401 MID TERM PAPERS SOLVED WITH REFRENCES BY MASOOM FAIRY

