MTH401 MID TERM PAST PAPERS (FILE PART I) SOLVED

 BY MASOOM FAIRY

 BY MASOOM FAIRY}

Note:

- I could not make Neat File due to Much Load shedding.
- There is an other file because of Large size of this one.

FINALTERM EXAMINATION
SPRING 2007
MTH401 - DIFFERENTIAL EQUATIONS (Session - 4)

Question No: 1 (Marks: 2) - Please choose one	
The Wronskian of the function	

	-0 -2 LECTURE 13 None of these
	Question No: 2 (Marks: 2) - Please choose one
	$\left(\begin{array}{ll} 2 & 3 \\ 2 & 1 \end{array}\right)$ The eigen values of matrix are - $\lambda=0,-1$ - $\lambda=4,-1$ $\lambda=1,5 \quad$ According to Page 437 None of these
	Question No: 3 (Marks: 2) - Please choose one

Roots of the equation $y^{\prime \prime \prime}+y^{\prime}=0$ will be
0, 1,2
$0,1, \mathrm{i},-\mathrm{i}$
None of these LECTURE 2 (SAPARIBLE EQUATIONS)

Question No: 4 (Marks: 2) - Please choose one

$$
y^{\prime \prime}+16 y=0 \text { with } y(0)=0, y\left(\frac{\pi}{8}\right)=0
$$

A differential equation is called

- Initial value problem

Boundary value problem
PAGE 108

- None of these

Question No: 5 (Marks: 2) - Please choose one

Suppose the functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ possess at least $\mathrm{n}-1$ derivatives on interval I , if
$W\left(f_{1}, f_{2}, \ldots, f_{n}\right) \neq 0$
is called \qquad

Linearly dependent

Linearly independent PAGE 110

None of these
MIDTERM EXAMINATION
SEMESTER FALL 2004
MTH401- Differential Equations

Total Marks: 50
Duration: 60min

Order of the differential equation is the highest order derivative in a differential equation.

[T

F
e^{x} Is integrating factor of the differential equation ${ }_{\mathrm{T}}(x+y+1, d x+x+2 y) d y=0$.
[
F
a 02

Question No: 3 Marks: 2

$$
: G\left(x, y, c_{1}\right)=0 \quad \underset{\text { orthogonal intersect all curves of another family } 2}{:} \mathrm{H}\left(x, y, c_{2}\right)=0
$$

families is said to be orthogonal trajectories of the other.

C T PAGE 74
E
F

Ounction No: 4

$$
f_{1}(x)=1+x, f_{2}(x)=x, f_{2}(x)=x^{2}
$$

C The given functions are linearly independent.
T

F

Question No: 5

A set of functions whose wronskian is zero guarantees that set of functions is linearly dependent.
T

F
(a) Define separable form. Just separate the variables of the given differential

$$
\text { equation. }(r \theta-4 r+\theta-4) d r-\left(r^{2} \theta+20 r^{2}-\theta-20\right) d \theta=0
$$

The differential equation of the form $d y / d x=f(x, y)$ is called separable if it can be written in the form $\mathrm{dy} / \mathrm{d} x=\mathrm{h}(\mathrm{x}) \mathrm{g}(\mathrm{y})$

$$
\begin{aligned}
& (r \theta-4 r+\theta-4) d r-\left(r^{2} \theta+20 r^{2}-\theta-20\right) d \theta=0 \\
& (r \theta-4 r+\theta-4) d r=\left(r^{2} \theta+20 r^{2}-\theta-20\right) d \theta \\
& {[r(\theta-4)+1(\theta-4)] d r=r^{2}(\theta+20)-1(\theta+20) d \theta}
\end{aligned}
$$

$$
(r+1)(\theta-4) d r=\left(r^{2}-1\right)(\theta+20) d \theta
$$

$$
-(r+1)(\theta+20)
$$

$$
\begin{aligned}
& \left(r^{2}-1\right)^{d r=}(\underline{\theta-4})^{d \theta} \\
& 1-(\underline{\theta} \pm \\
& \underline{20})^{d r=} d \theta r-1 \theta-4
\end{aligned}
$$

(b) Check whether the given differential equation is exact or not if not then make it exact also show that it is exact (Just make the equation exact do not solve it further).

$$
\left[\begin{array}{l}
\left(2 y^{2}+3 x\right) d x+2 x y d y=0 \\
M(x, y)=2 y^{2}+3 x, N(x, y)=2 x y \\
M_{y}=4 y, N_{x}=2 y \\
M_{y} \neq N_{x}
\end{array}\right.
$$

Thus it is not exact now we apply techniques to make it exact
$\left(2 y^{2}+3 x\right) d x+2 x y d y=0$
$\frac{M_{y}-N_{x}}{N}=\frac{4 y-2 y 2 y}{2 x y}=-\frac{1}{2 x y}=-x$
$I . F=e^{\int_{x}^{1} d x}=e^{\ln x}=x$
$\left(2 x y^{2}+3 x^{2}\right) d x+2 x^{2} y d y=0$
$M(x, y)=2 x y^{2}+3 x^{2}, N(x, y)=2 x^{2} y$
$M_{y}=4 x y, N_{x}=4 x y$
$M_{y}=N_{x}$
Which shows that now equation is exact

Question No: 7

$$
x y-\frac{d y}{d x}=y^{3} e^{-x^{2}}
$$

Solution

$x y-\quad d y d x=y^{3} e^{-x_{2}} x y$
$-{ }^{-2}-d y d x y^{-3}=e^{-x_{2}}$
put $y^{-2}=v$
$-_{-2}^{d y} d x y^{-3}=$
$d v d x-d y d x y^{-3}$.
$=12 d v d x$ Then
$\underline{1}_{1}^{1} d v d x+v x=e^{-x_{2}}$

$$
d v d x+2 v x=2 e^{-x_{2}}
$$

Thus it is linear in " v ".

	MIDTERM EXAMINATION SEMESTER FALL 2004 MTH401- Differential Equations	Total Marks: 50 Duration: 60min
Question No: 2		Marks: 2
$\begin{array}{lll} f(x, y) & =\frac{x}{x_{2}+y_{2}} \\ \boldsymbol{E} & & \\ & \text { T } & \\ \mathbf{E} & \mathbf{F} & \text { PAGE homogeneous. } \\ & 349 \end{array}$		
Question No: 3		Marks: 2
Population dynamics are not practical application of the first order differential equations.		
$\mathrm{C}^{\text {T }}$		
C F		

A set

$$
\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}
$$

Of n linearly dependent solutions, on interval I, of the homogeneous linear n th-order differential equation

$$
{ }_{a(x)}^{d_{n} y}+a(x)^{d_{n-1} y}+\mathbf{L}+a\left(x x^{n} \underline{{ }_{n}}+a(x) y=0\right.
$$

Is said to be a fundamental set of solutions on the interval I.
$\begin{array}{ll}\mathrm{E} & \mathrm{T} \\ \mathrm{E} & \mathrm{F}\end{array}$
Question No: 5
The differential operator that annihilates

$$
10 x_{3} 2 x
$$ is D^{4}.

[
T PAGE 167
0 F

Question No: 6
(a) Define separable form. Just separate the variables of the given differential equation.

$$
(3 r \theta-3 \theta+r-1) d r-(2 r \theta+4 \theta-r-2) d \theta=0
$$

Solution

The differential equation of the form $\mathrm{d} y / \mathrm{d} \mathrm{x}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ is called separable if it can be written in the form $\mathrm{d} y / \mathrm{d} x=\mathrm{h}(\mathrm{x}) \mathrm{g}(\mathrm{y})$

1. $3 r \theta-3 \theta+r-1) d r-(2 r \theta+4 \theta-r-2) d \theta=0$
2. $3 r \theta-3 \theta+r-1) d r=(2 r \theta+4 \theta-r-2) d \theta$
$[3 \theta(r-1)+1(r-1)] d r=2 \theta(r+2)-1(r+2) d \theta$
$(r-1)(3 \theta+1) d r=(r+2)(2 \theta-1) d \theta$
$(r-1) \quad(2 \theta-1)$
$\overline{(r+2)} d r=(3 \theta+1) d \theta$
(b) Check whether the given differential equation is exact or not if not then make it exact also show that it is exact (Just make the equation exact do not solve it further).
$3 y-{ }^{2} x^{2} a y x^{x}{ }_{5}=0$
$y \quad d x 2 y$

It can also be written as

$$
\begin{aligned}
& x d x+2\left(3 y^{2}-x^{2}\right) d y=0 \\
& M(x, y)=x, N(x, y)=6 y^{2}-2 x^{2} \\
& M_{y}=0, N_{x}=-4 x \\
& M_{y} \neq N_{x}
\end{aligned}
$$

Thus it is not exact now we apply techniques to make it exact

$$
\begin{aligned}
& x d x+\left(6 y^{2}-2 x^{2}\right) d y=0 \\
& N-M \\
& \quad M \quad y=\frac{-4 x}{x}=-4=g(y) \\
& I . F=e^{\int^{-4 d y}}=e^{-4 y} \\
& x e^{-4 y} d x+e^{-4 y}\left(3 y^{2}-2 x^{2}\right) d y=0 \\
& M(x, y)=x e^{-4 y}, N(x, y)=e^{-4 y}\left(3 y^{2}-2 x^{2}\right) \\
& M_{y}=-4 x e^{-4 y}, N_{x}= \\
& -4 x e^{-4 y} M_{y}=N_{x}
\end{aligned}
$$

Which shows that equation is exact

Question No: 7

$$
x^{3}{ }^{d y}+2 x y=y^{5}
$$

(a) Solve the Bernoulli equation

Solution

$$
\begin{aligned}
& { }_{3} d y+2 x y=y^{5} \\
& \text { ay }^{d x} y^{-5}+y^{-4}=1 \\
& d x \quad x^{2} \quad x^{3} \\
& \text { put } y^{-4}=v \\
& -4 \underline{d x} y^{-5}={ }^{d v} d x \\
& \underline{d y}{ }_{d x} y^{-5}=-{ }^{1}-\frac{d v}{d x}
\end{aligned}
$$

Then

$$
d v_{d x}-{ }_{x}^{8} v_{2}=-\frac{4}{x_{3}}
$$

Thus it is linear in " v ".

MIDTERM EXAMINATION
 SEMESTER FALL 2004
 MTH401- Differential Equations

Total Marks: 50
Duration: 60min

A differential equation said to be ordinary differential equation if it contains only ordinary derivatives with respect to single variable.

T
F PAGE 4

A solution of the differential equation of the form $y=f(x)$ is called the implicit solution.
T
F PAGE 6
A relation $\boldsymbol{G}(\boldsymbol{x}, \boldsymbol{y})$ is known as an implicit solution of a differential equation, if it defines one or more explicit solution on I.

Logistic equations are applications of non-linear equations.
T
F
https://www.google.com.pk/url?sa=f\&rct=j\&url=http://en.wikipedia.org/wiki/Logistic function\&q=\&esrc=s\&ei=vnudUci YOlej4gTB3ICYCQ\&usg=AFQjCNFQfw3zqH_eBDWh5GGKpRpoSXIqUg

The given functions $\left.{ }^{1}\left({ }^{x}\right)=5, f_{2}\left({ }^{x}\right)=\cos _{2} x, f_{3}{ }^{x}\right)=\sin _{2} x$ are linearly independent. E T

F PAGE 112

Question No: 5
A set of functions whose wronskian is zero then set of functions may or may not be dependent.

T

F
http://math.berkeley.edu/~mannisto/lindiff2.pdf
(a) Define separable form. Just separate the variables of the given differential equation.
$\underline{d y}$

The differential equation of the form $d y / d x=f(x, y)$ is called separable if it can be written in the form $d y / d x=h(x) g(y)$
$\sec y^{\underline{d y}} d x+\sin (x-y)=\sin (x+y)$
$\sec y \frac{d y}{d x}=\sin (x+y)-\sin (x-y)$
$\sec y^{\underline{d y}} d x=\sin (x+y)-\sin (x-y)$
$\sec y^{\underline{d y}} d x=\sin x \cos y+\cos x \sin y-\sin x \cos y+\cos x$
$\sin y \sec y^{\underline{d y}} d x=2 \cos x \sin y$
$\square d y=\cos x d x$
$2 \cos y \sin y \sin { }^{d y} 2$
$y=\cos x d x$
$\cos e c 2 y d y=\cos x d x$
(b) Check whether the given differential equation is exact or not if not then make it exact also show that it is
exact (Just make the equation exact do not solve it further).
$e^{x} d x+\left(e^{x} \cot y+2 y \cos e c y\right) d y=0$
|

$$
\left[\begin{array}{l}
e^{x} d x+\left(e^{x} \cot y+2 y \cos e c y\right) d y=0 \\
M(x, y)=e^{x}, N(x, y)=e^{x} \cot y+2 y \cos e c y \\
M_{y}=0, N_{x}=e^{x} \cot y \\
M_{y} \neq N_{x}
\end{array}\right.
$$

Thus it is not exact now we apply techniques to make it exact

$$
\begin{aligned}
& e^{x} d x+\left(e^{x} \cot y+2 y \cos e c y\right) d y=0 \\
& \frac{N_{x}-M_{y}}{M}=\frac{e^{x} \cot y-0}{e^{x}}=\cot y \\
& I . F=e^{\cot y d y}=e^{\ln \sin y}=\sin y \\
& e^{x} \sin y d x+\left(e^{x} \cos y+2 y\right) d y=0 \\
& M(x, y)=e^{x} \sin y, N(x, y)=e^{x} \cos y+2 y \\
& M_{\text {IVI }}^{M}=e^{x} \cos y, N_{x}=e^{x} \cos y \\
& y=N_{x}
\end{aligned}
$$

Which shows that equation is exact
Question No: 7
(a) Solve Bernoulli equation
$d x$
(Just make the given equation linear in \mathbf{v}, do not integrate)

Solution

$$
\begin{aligned}
& x y-\frac{a y}{d x}=y^{3}(x-1) \\
& x y^{-2}-a y y^{-3}=(x-1) \\
& d x \\
& p u t y^{-2}=v \\
& -2^{\underline{a y}} v^{-3}=\frac{u v}{d x} \\
& d x \\
& -\frac{a y}{d x} v^{-3}=\frac{\underline{u v}}{2} \\
& d x
\end{aligned}
$$

Then

${ }_{2}{ }^{d v} d x+v x=(x-1)$
dv $d x+2 v x=2(x-1)$
(b) The radioactive isotope of the lead, $\mathrm{Pb}-209$, decay at a rate proportional to the amount present at any time
and has a half-life of 4 hours. If 2 grams of the lead is present initially, how long will it take for 80% of the lead to decay? (Just make the model of the radioactive decay as well as describe the given conditions do not solve further)

MTH401 MID TERM PAST PAPERS (FILE PART I) SOLVED

BY MASOOM FAIRY

Note:
 - I could not make Neat File, due to Much Load shedding.
 - There is an other file because of Large size of this one.

