FINALTERM EXAMINATION Fall 2009 Calculus & Analytical Geometry-I

Question No: 1 (Marks: 1) - Please choose one

$$y = \frac{x^2}{2}$$

Let $\,$. Find average rate of change of $\,^y$ with respect to $\,^x$ over the interval [3, 4]

 $\frac{2}{14}$

 $\frac{7}{14}$

Question No: 2 (Marks: 1) - Please choose one

$$\frac{dy}{dx}$$

▶ -2

▶ 0 **▶** -3

Question No: 3 (Marks: 1) - Please choose one

In the following figure, the area bounded on the sides by the lines are:

$$x = 0$$

$$x = 2$$

$$x = 0 \text{ and } x = 2$$

$$x = 6$$

Question No: 4 (Marks: 1) - Please choose one

What is the sum of following series?

$$1+2+3+4+_{---}+n$$

$$\frac{n+1}{2}$$

$$\frac{(n+1)(n+2)}{2}$$

$$\frac{n(n+2)}{2}$$

$$\frac{n(n+1)}{2}$$

Question No: 5 (Marks: 1) - Please choose one

Let f is a smooth function on [0, 3]. What will be the arc length L of the curve y = f(x) from

$$x = 0 \text{ to } x = 3?$$

$$L = \int_{0}^{3} \sqrt{1 + [f(x)]^{2}} \, dy$$

▶

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2}$$

▶

$$L = \int_{0}^{3} \sqrt{1 + [f'(x)]^{2}} dy$$

Question No: 6 (Marks: 1) - Please choose one

The PYTHAGORAS theorem describes the relationship between the sides of $% \left\{ 1\right\} =\left\{ 1\right\} =\left\{$

...... Right angle triangle

Right angle triangle

- ▶ Isoceleous triangle
- ► Equilateral triangle

Question No: 7 (Marks: 1) - Please choose one

Which operation can not be applied on the functions?

Subtraction

Cross product

- Addition
- ► Composition

Question No: 8 (Marks: 1) - Please choose one

The graph of the equation $y = x^2 - 4x + 5$ will represent

▶ Parabola

- ➤ Straight line
- ► Two straight lines
- ► Ellipse

Question No: 9 (Marks: 1) - Please choose one

Polynomials are always functions

Continuous

▶ Discontinuous

Question No: 10 (Marks: 1) - Please choose one

The tan(x) is discontinuous at the points where

- ightharpoonup Cos(x) = 0
- ightharpoonup Sin(x) = 0

Question No: 11 (Marks: 1) - Please choose one

A differentiable function must be differentiable on the interval

 $(-\infty,\infty)$

- **▶** (0,∞)
 - (-∞,∝
 - (a, ∞) where a is any negative integer

Question No: 12 (Marks: 1) - Please choose one

Let $y = (x^3 + 2x)^{37}$ When $y = (x^3 + 2x)^{37}$

. Which of the following is correct?

$$\frac{dy}{dx} = (37)(x^3 + 2x)^3$$

d

$$\frac{dy}{dx} = 111x^2(x^3 + 2x)^{36}$$

$$\frac{dy}{dx} = (111x^2 + 74)(x^3 + 2x)^{36}$$

•

$$\frac{dy}{dx} = (111x^2 + 74)(x^3 + 2x)^{38}$$

ightharpoons

Question No: 13 (Marks: 1) - Please choose one

$$\int \frac{3x^2 + 4x + 1}{x^3 + 2x^2 + x - 3} \, dx$$

Consider the indefinite integral

Let
$$t = x^3 + 2x^2 + x - 3$$

Is the following substitution correct?

$$\int \frac{3x^2 + 4x + 1}{x^3 + 2x^2 + x - 3} \, dx = \int \frac{1}{t} \, dt$$

Ouestion No: 14 (Marks: 1) - Please choose one

 $\log_b ac = \underline{\hspace{1cm}}$

$$\log_b a - \log_b c$$

$$\frac{\log_b a}{\log_b c}$$

$$(\log_b a)(\log_b c)$$

Question No: 15 (Marks: 1) - Please choose one

If a function has an extreme value (either a maximum or a minimum) on an open interval (a,b), then the extreme value occurs at of f

- ► First point
 - ► Mid point
 - ► Critical point
 - ▶ End point

Question No: 16 (Marks: 1) - Please choose one

The Mean Value Theorem states that "Let function f be differentiable on (a,b) and continuous on [a, b], then there exist at least one point c in (a,b) where"

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

$$f(c) = \frac{f(b) - f(a)}{b - a}$$

$$f(c) = \frac{f(a) - f(b)}{b - a}$$

$$f'(c) = \frac{f(a) - f(b)}{b - a}$$

Question No: 17 (Marks: 1) - Please choose one

$$\frac{d}{dx}[F(x)] = f(x)$$

If there is some function *F* such that

then any function of

the form
$$F(x) + C$$
 is ----- of $F(x)$

Derivative

▶ Antiderivative

- ➤ Slope
- ▶ Maximum value

Question No: 18 (Marks: 1) - Please choose one

$$\sum_{k=1}^{n} f(x_{k}^{*}) \Delta x_{k}$$

The sum

is known as:

▶ Riemann Sum

- ▶ General Sum
- ► Integral Sum
- ► Geometric Sum

Question No: 19 (Marks: 1) - Please choose one

$$\int_{1}^{\frac{\pi}{2}} \cos u \, du$$

, then which of the following is true?

Question No: 20 (Marks: 1) - Please choose one

$$\int_{0}^{\pi} \sin u \, du$$

, then which of the following is true?

Question No: 21 (Marks: 1) - Please choose one

$$\frac{d}{dx}[F(x)] = f(x)$$

If there is some function *F* such that

then antiderivatives

of
$$f(x)$$
 are $F(x)+C$. What does C represents?

- ▶ Polynomial
- ▶ Constant
- ► Dependent Variable
- ► Independent Variable

Question No: 22 (Marks: 1) - Please choose one

If f and g are continues function on an interval [a, b] and $f(x) \ge g(x)$ for $a \le x \le b$, then area is bounded by the lines parallel to:

- X -axis
- Y-axis
- ▶ Both X -axis and Y-axis

Question No: 23 (Marks: 1) - Please choose one

$$\int_{1}^{2/3} dx = \underline{\hspace{1cm}}$$

- Question No: 24 (Marks: 1) Please choose one

$$\int_{0}^{2} x \ dx = \underline{\qquad}$$

- **▶** 2

- y = f(x) = 3x + 1

Question No: 25 (Marks: 1) - Please choose one

Which of the following is approximate area of the shaded region by taking X_1^* and X_2^* as left endpoint of equal-length subintervals?

- ▶ 17
- ▶ 23

Question No: 26 (Marks: 1) - Please choose one

Which of the following is approximate area of the shaded region by taking X_1^* and X_2^* as right endpoint of equal-length subintervals?

Question No: 27 (Marks: 1) - Please choose one

What is the length of each sub-interval, if the interval [1,3] is divided into nsub-intervals of equal length?

▶ 10

Question No: 28 (Marks: 1) - Please choose one

Evaluate

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = ----$$

Question No: 29 (Marks: 1) - Please choose one

$$\left\{\frac{1}{2^n}\right\}_1^n$$

represents the sequence:

$$\frac{-1}{2}, \frac{-1}{4}, \frac{-1}{8}, \dots$$

$$\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$$

 \blacktriangleright

$$0,1,\frac{1}{2},\frac{1}{4},...$$

012

Question No: 30 (Marks: 1) - Please choose one

For a sequence $\{a_n\}$ if the difference between successive terms $a_{n+1}-a_n \leq 0$ then the sequence is known as:

- Increasing
- Decreasing
- ▶ Nondecreasing
- ▶ Nonincreasing

Question No: 31 (Marks: 1) - Please choose one

$$\frac{a_{n+1}}{a_n} > 1$$

For a sequence $\{a_n\}$ if the ratio of successive terms is known as:

then the sequence

▶ Increasing

- Decreasing
- ▶ Nondecreasing
- ▶ Nonincreasing

Question No: 32 (Marks: 1) - Please choose one

If the partial sum of a series is finite then the series will/will be:

▶ Divergent

Convergent

▶ Give no information

Ouestion No: 33 (Marks: 1) - Please choose one

If the geometric series $\begin{array}{c} a+ar+ar^2+ar^3+...+ar^{k-1}+... & where \ (a\neq 0) \\ |r|<1 \end{array} ,$

then which of the following is true for the given series?

Converges

- ▶ Diverges
- ▶ Gives no information

Question No: 34 (Marks: 1) - Please choose one

$$\rho = \lim_{k \to +\infty} \sqrt[k]{u_k}$$
 If where $\rho > 1$ then the series $\sum u_k$ with positive terms will /will be.....?

Convergent

- ▶ Divergent
- ▶ Give no information

Question No: 35 (Marks: 1) - Please choose one

$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k}$$

Which of the following is true for the series

?

- ▶ Arithmetic Series
- ▶ Geometric Series

► Alternating Harmonic Series

▶ Harmonic Series

Question No: 36 (Marks: 1) - Please choose one

.....is the special case of Tylor's theorem.

▶ Roll's Theorem

- ► Picard's Method
- ► Integration
- ► Maclaurin's Theorem

Question No: 37 (Marks: 1) - Please choose one

If f is integrable on a closed interval containing the four points $\emph{a, b, c}$ and \emph{d} then

$$\int_{a}^{d} f(x)dx = \underline{\hspace{1cm}}$$

$$\int_{a}^{b} f(x) \ dx + \int_{a}^{d} f(x) \ dx$$

$$\int_{a}^{c} f(x) \ dx + \int_{b}^{d} f(x) \ dx$$

$$\int_{a}^{d} f(x) \ dx$$

Question No: 38 (Marks: 1) - Please choose one

Suppose f and g are integrable functions on [a, b] and c is a constant, then $\int_{a}^{b} c \left[f(x) + g(x) \right] dx = \underline{\qquad}$

$$\int_{a}^{b} f(cx)dx + \int_{a}^{b} g(cx)dx$$

$$\downarrow \qquad \qquad \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

$$\downarrow \qquad \qquad c \int_{a}^{b} f(x)dx + c \int_{a}^{b} g(x)dx$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

Question No: 39 (Marks: 1) - Please choose one

What is the difference between the values of the

$$\int_{a}^{b} f(x)dx \text{ and } \int_{a}^{b} f(t)dt$$

integrals

- ► Differ by b-a
- ▶ Differ by a-b

No difference

▶ Differ by b+a

Question No: 40 (Marks: 1) - Please choose one

$$\int_{-1}^{2} f(x) dx = 5$$

$$\int_{-1}^{2} g(x) dx = -3$$
If and then which of the following is value
$$\int_{-1}^{2} [f(x) + 2g(x)] dx$$
of ?

▶ -8

► 2 ► 11

Question No: 41 (Marks: 2)

$$\frac{1}{1} + \frac{1}{8} + \frac{1}{27} + \dots + \frac{1}{1000}$$

Express the sum

in sigma notation.

$$\sum_{n=1}^{10} (1/n^3)$$

Question No: 42 (Marks: 2)

Only write down the Maclaurin series for $^{\it e}$

Question No: 43 (Marks: 2)

Evaluate the following integral:

$$\sqrt{x} dx$$

$$= \int_{1}^{4} \sqrt{x \cdot 1} dx$$

$$= x\sqrt{x} + \int_{1}^{4} 1/\sqrt{x \cdot 1} dx$$

Question No: 44 (Marks: 3)

Evaluate the following sum:

$$\sum_{k=1}^{6} (k^2 - 5)$$
= -4-1+4+11+20+31=61

Question No: 45 (Marks: 3)

Find a definite integral indicating the area enclosed by the curves $y=x^2$, x>0 and bounded on the sides by the lines y=1 and y=4. But do not evaluate the integral.

Question No: 46 (Marks: 3)

$$a_n = \left\{ \frac{3}{n^2} \right\}_{n=5}^{\infty}$$

Determine whether the following sequence is strictly monotone or $\,$ not.If your answer is yes or no, then give reason .

Yes the sequence is strictly monotone because the denominator is increasing

Question No: 47 (Marks: 5)

The region bounded by the γ -axis, the graph of the equation $x = y^2$ and the line $\gamma = 2$ is revolved about γ -axis. Find the volume of the resulting solid.

Question No: 48 (Marks: 5)

Compute the following sum:

Question No: 49 (Marks: 5)

Use L'Hopital's rule to evaluate the limit

$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{1 + \cos 2x}$$

$$\lim_{x \to \frac{\pi}{2}} (1 - \sin x) = 0 \lim_{x \to \frac{\pi}{2}} (1 + \cos 2x) = 0$$

$$= 0/0$$

So by L'Hopital's rule

$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{1 + \cos 2x}$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{d / dx (1 - \sin x)}{d / dx (1 + \cos 2x)}$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{-\cos x}{-2\sin 2x} = \frac{\cos \frac{\pi}{2}}{2\sin \pi} = 0$$

Question No: 50 (Marks: 10)

$$\sum_{1}^{\infty} \frac{2^{n}}{n(n+2)}$$

Use the Ratio test to determine whether the series diverges.

$$p = \lim_{x \to \infty} \frac{u_{k+1}}{u_k} =$$

FINALTERM EXAMINATION Fall 2009 Calculus & Analytical Geometry-I

Question No: 1 (Marks: 1) - Please choose one

$$y = \frac{x^2}{2}$$

Let . Find average rate of change of y with respect to x over the interval $\begin{bmatrix} 3,4 \end{bmatrix}$ $\frac{25}{2}$

 $\begin{array}{c} \bullet \\ \frac{7}{14} \\ \bullet \end{array}$

Question No: 2 (Marks: 1) - Please choose one

If
$$2x - y = -3$$
 then $\frac{dy}{dx}$

▶ 0

Question No: 3 (Marks: 1) - Please choose one

In the following figure, the area bounded on the sides by the lines are:

$$x = 0$$

$$x = 2$$

$$x = 0 \text{ and } x = 2$$

$$x = 6$$

Question No: 4 (Marks: 1) - Please choose one

What is the sum of following series?

$$1+2+3+4+_{---}+n$$

$$\frac{n+1}{2}$$

$$\frac{(n+1)(n+2)}{2}$$

$$\frac{n(n+2)}{2}$$

$$\frac{n(n+1)}{2}$$

Question No: 5 (Marks: 1) - Please choose one

Let f is a smooth function on [0, 3]. What will be the arc length L of the curve y = f(x) from

$$x = 0 \text{ to } x = 3$$
?

$$L = \int_{0}^{3} \sqrt{1 + [f(x)]^{2}} \, dy$$

▶

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2}$$

▶

$$L = \int_{0}^{3} \sqrt{1 + [f'(x)]^{2}} \, dy$$

Question No: 6 (Marks: 1) - Please choose one

The PYTHAGORAS theorem describes the relationship between the sides of

..... Right angle triangle

Right angle triangle

- ▶ Isoceleous triangle
- ► Equilateral triangle

Question No: 7 (Marks: 1) - Please choose one

Which operation can not be applied on the functions?

- ▶ Subtraction
- Cross product
- ▶ Addition
- ► Composition

Question No: 8 (Marks: 1) - Please choose one

The graph of the equation $y = x^2 - 4x + 5$ will represent

▶ Parabola

- ➤ Straight line
- ▶ Two straight lines
- ► Ellipse

Question No: 9 (Marks: 1) - Please choose one

Polynomials are always functions

▶ Continuous

▶ Discontinuous

Question No: 10 (Marks: 1) - Please choose one

The tan(x) is discontinuous at the points where

$$ightharpoonup$$
 Cos(x) =0

$$ightharpoonup$$
 Tan(x) =0

Question No: 11 (Marks: 1) - Please choose one

A differentiable function must be differentiable on the interval

 $(-\infty, \infty)$

(a,
$$\infty$$
) where a is any negative integer

Question No: 12 (Marks: 1) - Please choose one

$$y = (x^3 + 2x)^{37}$$

Let $y = (x^3 + 2x)^{37}$. Which of the following is correct?

$$\frac{dy}{dx} = (37)(x^3 + 2x)^{36}$$

$$\frac{dy}{dx} = 111x^2(x^3 + 2x)^3$$

$$\frac{dy}{dx} = (111x^2 + 74)(x^3 + 2x)^{36}$$

$$\frac{dy}{dx} = (111x^2 + 74)(x^3 + 2x)^{38}$$

Question No: 13 (Marks: 1) - Please choose one

$$\int \frac{3x^2 + 4x + 1}{x^3 + 2x^2 + x - 3} \, dx$$

Consider the indefinite integral

Let
$$t = x^3 + 2x^2 + x - 3$$

Is the following substitution correct?

$$\int \frac{3x^2 + 4x + 1}{x^3 + 2x^2 + x - 3} \, dx = \int \frac{1}{t} \, dt$$

Ouestion No: 14 (Marks: 1) - Please choose one

 $\log_b ac = \underline{\hspace{1cm}}$

$$\log_b a - \log_b c$$

$$\frac{\log_b a}{\log_b c}$$

$$(\log_b a)(\log_b c)$$

Question No: 15 (Marks: 1) - Please choose one

If a function has an extreme value (either a maximum or a minimum) on an open interval (a,b), then the extreme value occurs at of f

- ▶ First point
 - ► Mid point
 - Critical point
 - ▶ End point

Question No: 16 (Marks: 1) - Please choose one

The Mean Value Theorem states that "Let function f be differentiable on (a,b) and continuous on [a, b], then there exist at least one point c in (a,b) where"

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

$$f(c) = \frac{f(b) - f(a)}{b - a}$$

$$f(c) = \frac{f(a) - f(b)}{b - a}$$

$$f'(c) = \frac{f(a) - f(b)}{b - a}$$

Question No: 17 (Marks: 1) - Please choose one

$$\frac{d}{dx}[F(x)] = f(x)$$

If there is some function F such that

then any function of
$$\frac{1}{2}$$

the form F(x) + C is ----- of f(x)

Derivative

► Antiderivative

- ▶ Slope
- ▶ Maximum value

Question No: 18 (Marks: 1) - Please choose one

$$\sum_{k=1}^{n} f(x_{k}^{*}) \Delta x_{k}$$

The sum

is known as:

▶ Riemann Sum

- ▶ General Sum
- ► Integral Sum
- ► Geometric Sum

Question No: 19 (Marks: 1) - Please choose one

 $\int_{0}^{\frac{\pi}{2}} \cos u \, du$

If ,

- , then which of the following is true?
- ► 2 ►:
 - **▶** 0

Question No: 20 (Marks: 1) - Please choose one

$$\int_{0}^{\pi} \sin u \, du$$

If , then which of the following is true?

- **▶** 2
- ▶ 2
- **▶** -1

Question No: 21 (Marks: 1) - Please choose one

$$\frac{d}{dx}[F(x)] = f(x)$$

If there is some function F such that

then antiderivatives

of f(x) are F(x)+C . What does C represents?

- ▶ Polynomial
- ▶ Constant
- ► Dependent Variable
- ► Independent Variable

Question No: 22 (Marks: 1) - Please choose one

If f and g are continues function on an interval [a,b] and $f(x) \ge g(x)$ for $a \le x \le b$ and g(x) = a + b, then area is bounded by the lines parallel to:

- ➤ X -axis
- ➤ Y-axis
- ▶ Both X -axis and Y-axis

Question No: 23 (Marks: 1) - Please choose one

$$\int_{1}^{2/3} dx = \underline{\hspace{1cm}}$$

- $\frac{-1}{3}$
 - ▶ 0
 - $\rightarrow \frac{3}{3}$

Question No: 24 (Marks: 1) - Please choose one

$$\int_{0}^{2} x \ dx = \underline{\qquad}$$

- U
- **▶** -2
- $\frac{x}{2}$

Question No: 25 (Marks: 1) - Please choose one

Which of the following is approximate area of the shaded region by taking x_1^* and x_2^* as left endpoint of equal-length subintervals?

Question No: 26 (Marks: 1) - Please choose one

Which of the following is approximate area of the shaded region by taking x_1^* and x_2^* as right endpoint of equal-length subintervals?

Question No: 27 (Marks: 1) - Please choose one

What is the length of each sub-interval, if the interval [1,3] is divided into nsub-intervals of equal length?

Question No: 28 (Marks: 1) - Please choose one

Evaluate

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = - - - -$$

Ouestion No: 29 (Marks: 1) - Please choose one

$$\left\{\frac{1}{2^n}\right\}_{1}^n$$

represents the sequence:

$$\frac{-1}{2}, \frac{-1}{4}, \frac{-1}{8}, \dots$$

Question No: 30 (Marks: 1) - Please choose one

For a sequence $\{a_n\}$ if the difference between successive terms $a_{n+1} - a_n \stackrel{\cdot}{\leq} 0$ then the sequence is known as:

- Increasing
- ▶ Decreasing
- ▶ Nondecreasing
- ▶ Nonincreasing

Question No: 31 (Marks: 1) - Please choose one

$$\frac{a_{n+1}}{a} > 1$$

For a sequence $\{a_n\}$ if the ratio of successive terms then the sequence is known as:

▶ Increasing

- ▶ Decreasing
- ▶ Nondecreasing
- ▶ Nonincreasing

Question No: 32 (Marks: 1) - Please choose one

If the partial sum of a series is finite then the series will/will be:

- ▶ Divergent
 - Convergent
 - ▶ Give no information

Ouestion No: 33 (Marks: 1) - Please choose one

 $a + ar + ar^{2} + ar^{3} + ... + ar^{k-1} + ...$ where $(a \neq 0)$ If the geometric series |r| < 1

then which of the following is true for the given series?

▶ Converges

- ▶ Diverges
- ► Gives no information

Question No: 34 (Marks: 1) - Please choose one

$$\rho = \lim_{k \to +\infty} \sqrt[k]{u_k}$$
 If where $\rho > 1$ then the series $\sum u_k$ with positive terms will /will be.....?

Convergent

- ▶ Divergent
- ▶ Give no information

Question No: 35 (Marks: 1) - Please choose one

$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k}$$

Which of the following is true for the series

- ▶ Arithmetic Series
- ► Geometric Series

► Alternating Harmonic Series

▶ Harmonic Series

Question No: 36 (Marks: 1) - Please choose one

.....is the special case of Tylor's theorem.

▶ Roll's Theorem

- ▶ Picard's Method
- ► Integration
- ► Maclaurin's Theorem

Question No: 37 (Marks: 1) - Please choose one

If f is integrable on a closed interval containing the four points $\emph{a, b, c}$ and \emph{d} then

$$\int_{0}^{d} f(x)dx = \underline{\hspace{1cm}}$$

$$\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx + \int_{c}^{d} f(x) dx$$

$$\int_{a}^{b} f(x) \ dx + \int_{a}^{d} f(x) \ dx$$

$$\int_{0}^{c} f(x) dx + \int_{0}^{d} f(x) dx$$

$$\int_{a}^{d} f(x) \ dx$$

Question No: 38 (Marks: 1) - Please choose one

Suppose f and g are integrable functions on [a, b] and c is a constant, then

$$\int_{a}^{b} c \left[f(x) + g(x) \right] dx = \underline{\qquad}$$

$$\int_{a}^{b} f(cx)dx + \int_{a}^{b} g(cx)dx$$

$$\int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

$$c \int_{a}^{b} f(x)dx + c \int_{a}^{b} g(x)dx$$

$$c \int_{a}^{b} f(x)dx + c \int_{a}^{b} g(x)dx$$

Ouestion No: 39 (Marks: 1) - Please choose one

What is the difference between the values of the

$$\int_{a}^{b} f(x)dx \quad and \quad \int_{a}^{b} f(t)dt$$

integrals

- ▶ Differ by b-a
- ▶ Differ by a-b
- No difference
- ▶ Differ by b+a

Question No: 40 (Marks: 1) - Please choose one

$$\int_{-1}^{2} f(x) dx = 5 \qquad \int_{-1}^{2} g(x) dx = -3$$
If and then which of the following is value
$$\int_{-1}^{2} [f(x) + 2g(x)] dx$$
of ?

- ▶ -1
- ▶ -8
- **▶** 2

▶ 11

Question No: 41 (Marks: 2)

$$\frac{1}{1} + \frac{1}{8} + \frac{1}{27} + \dots + \frac{1}{1000}$$

Express the sum

in sigma notation.

$$\sum_{n=1}^{10} (1/n^3)$$

Question No: 42 (Marks: 2)

Only write down the Maclaurin series for $e^{-\epsilon}$

Question No: 43 (Marks: 2)

Evaluate the following integral:

$$\int_{1}^{4} \sqrt{x} dx$$

$$\int_{1}^{4} \sqrt{x} dx$$

$$= \int_{1}^{4} \sqrt{x}.1 dx$$

$$= x\sqrt{x} + \int_{1}^{4} 1/\sqrt{x}.1 dx$$

Question No: 44 (Marks: 3)

Evaluate the following sum:

$$\sum_{k=1}^{6} (k^2 - 5)$$
= -4 - 1 + 4 + 11 + 20 + 31 = 61

Question No: 45 (Marks: 3)

Find a definite integral indicating the area enclosed by the curves $y=x^2$, x>0 and bounded on the sides by the lines y=1 and y=4. But do not evaluate the integral.

Question No: 46 (Marks: 3)

$$a_n = \left\{ \frac{3}{n^2} \right\}_{n=1}^{\infty}$$

Determine whether the following sequence is strictly monotone or $\mbox{not.}$ If your answer is yes or no, then give reason .

Yes the sequence is strictly monotone because the denominator is increasing

Question No: 47 (Marks: 5)

The region bounded by the y-axis, the graph of the equation $x = y^{\overline{2}}$ and the line y = 2 is revolved about y-axis. Find the volume of the resulting solid.

Question No: 48 (Marks: 5)

Compute the following sum:

Question No: 49 (Marks: 5)

Use L'Hopital's rule to evaluate the limit

$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{1 + \cos 2x}$$

$$\lim_{x \to \frac{\pi}{2}} (1 - \sin x) = 0 \lim_{x \to \frac{\pi}{2}} (1 + \cos 2x) = 0$$

$$= 0/0$$
So by L'Hopital's rule
$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{1 + \cos 2x}$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{d/dx(1 - \sin x)}{d/dx(1 + \cos 2x)}$$

Question No: 50 (Marks: 10)

$$\sum_{1}^{\infty} \frac{2^{n}}{n(n+2)}$$

Use the Ratio test to determine whether the series diverges.

converges or

$$p = \lim_{x \to \infty} \frac{u_{k+1}}{u_k} =$$

FINALTERM EXAMINATION Fall 2009 Calculus & Analytical Geometry-I

Question No: 1 (Marks: 1) - Please choose one

$$y = \frac{x^2}{2}$$

Let $\,$. Find average rate of change of $\,^y$ with respect to $\,^x$ over the interval [3, 4]

 $\frac{2}{14}$

 $\frac{7}{14}$

Question No: 2 (Marks: 1) - Please choose one

$$\frac{dy}{dx}$$

▶ -2

▶ 0 **▶** -3

Question No: 3 (Marks: 1) - Please choose one

In the following figure, the area bounded on the sides by the lines are:

$$x = 0$$

$$x = 2$$

$$x = 0 \text{ and } x = 2$$

$$x = 6$$

Question No: 4 (Marks: 1) - Please choose one

What is the sum of following series?

$$1+2+3+4+_{---}+n$$

$$\frac{n+1}{2}$$

$$\frac{(n+1)(n+2)}{2}$$

$$\frac{n(n+2)}{2}$$

$$\frac{n(n+1)}{2}$$

Question No: 5 (Marks: 1) - Please choose one

Let f is a smooth function on [0, 3]. What will be the arc length L of the curve y = f(x) from

$$x = 0 \text{ to } x = 3?$$

$$L = \int_{0}^{3} \sqrt{1 + [f(x)]^{2}} \, dy$$

▶

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2}$$

▶

$$L = \int_{0}^{3} \sqrt{1 + [f'(x)]^{2}} dy$$

Question No: 6 (Marks: 1) - Please choose one

The PYTHAGORAS theorem describes the relationship between the sides of $% \left\{ 1\right\} =\left\{ 1\right\} =\left\{$

...... Right angle triangle

Right angle triangle

- ▶ Isoceleous triangle
- ► Equilateral triangle

Question No: 7 (Marks: 1) - Please choose one

Which operation can not be applied on the functions?

Subtraction

Cross product

- Addition
- ► Composition

Question No: 8 (Marks: 1) - Please choose one

The graph of the equation $y = x^2 - 4x + 5$ will represent

▶ Parabola

- ➤ Straight line
- ► Two straight lines
- ► Ellipse

Question No: 9 (Marks: 1) - Please choose one

Polynomials are always functions

Continuous

▶ Discontinuous

Question No: 10 (Marks: 1) - Please choose one

The tan(x) is discontinuous at the points where

- ightharpoonup Cos(x) = 0
- ightharpoonup Sin(x) = 0

Question No: 11 (Marks: 1) - Please choose one

A differentiable function must be differentiable on the interval

 $(-\infty,\infty)$

- **▶** (0,∞)
 - (-∞,∝
 - (a, ∞) where a is any negative integer

Question No: 12 (Marks: 1) - Please choose one

Let $y = (x^3 + 2x)^{37}$ When $y = (x^3 + 2x)^{37}$

. Which of the following is correct?

$$\frac{dy}{dx} = (37)(x^3 + 2x)^3$$

d

$$\frac{dy}{dx} = 111x^2(x^3 + 2x)^{36}$$

$$\frac{dy}{dx} = (111x^2 + 74)(x^3 + 2x)^{36}$$

•

$$\frac{dy}{dx} = (111x^2 + 74)(x^3 + 2x)^{38}$$

ightharpoons

Question No: 13 (Marks: 1) - Please choose one

$$\int \frac{3x^2 + 4x + 1}{x^3 + 2x^2 + x - 3} \, dx$$

Consider the indefinite integral

Let
$$t = x^3 + 2x^2 + x - 3$$

Is the following substitution correct?

$$\int \frac{3x^2 + 4x + 1}{x^3 + 2x^2 + x - 3} \, dx = \int \frac{1}{t} \, dt$$

Ouestion No: 14 (Marks: 1) - Please choose one

 $\log_b ac = \underline{\hspace{1cm}}$

$$\log_b a - \log_b c$$

$$\frac{\log_b a}{\log_b c}$$

$$(\log_b a)(\log_b c)$$

Question No: 15 (Marks: 1) - Please choose one

If a function has an extreme value (either a maximum or a minimum) on an open interval (a,b), then the extreme value occurs at of f

- ► First point
 - ► Mid point
 - ► Critical point
 - ▶ End point

Question No: 16 (Marks: 1) - Please choose one

The Mean Value Theorem states that "Let function f be differentiable on (a,b) and continuous on [a, b], then there exist at least one point c in (a,b) where"

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

$$f(c) = \frac{f(b) - f(a)}{b - a}$$

$$f(c) = \frac{f(a) - f(b)}{b - a}$$

$$f'(c) = \frac{f(a) - f(b)}{b - a}$$

Question No: 17 (Marks: 1) - Please choose one

$$\frac{d}{dx}[F(x)] = f(x)$$

If there is some function *F* such that

then any function of

the form
$$F(x) + C$$
 is ----- of $F(x)$

Derivative

▶ Antiderivative

- ➤ Slope
- ▶ Maximum value

Question No: 18 (Marks: 1) - Please choose one

$$\sum_{k=1}^{n} f(x_{k}^{*}) \Delta x_{k}$$

The sum

is known as:

▶ Riemann Sum

- ▶ General Sum
- ► Integral Sum
- ► Geometric Sum

Question No: 19 (Marks: 1) - Please choose one

$$\int_{1}^{\frac{\pi}{2}} \cos u \, du$$

, then which of the following is true?

Question No: 20 (Marks: 1) - Please choose one

$$\int_{0}^{\pi} \sin u \, du$$

, then which of the following is true?

Question No: 21 (Marks: 1) - Please choose one

$$\frac{d}{dx}[F(x)] = f(x)$$

If there is some function *F* such that

then antiderivatives

of
$$f(x)$$
 are $F(x)+C$. What does C represents?

- ▶ Polynomial
- ▶ Constant
- ► Dependent Variable
- ► Independent Variable

Question No: 22 (Marks: 1) - Please choose one

If f and g are continues function on an interval [a, b] and $f(x) \ge g(x)$ for $a \le x \le b$, then area is bounded by the lines parallel to:

- X -axis
- Y-axis
- ▶ Both X -axis and Y-axis

Question No: 23 (Marks: 1) - Please choose one

$$\int_{1}^{2/3} dx = \underline{\hspace{1cm}}$$

- Question No: 24 (Marks: 1) Please choose one

$$\int_{0}^{2} x \ dx = \underline{\qquad}$$

- **▶** 2

- y = f(x) = 3x + 1

Question No: 25 (Marks: 1) - Please choose one

Which of the following is approximate area of the shaded region by taking X_1^* and X_2^* as left endpoint of equal-length subintervals?

- ▶ 17
- ▶ 23

Question No: 26 (Marks: 1) - Please choose one

Which of the following is approximate area of the shaded region by taking X_1^* and X_2^* as right endpoint of equal-length subintervals?

Question No: 27 (Marks: 1) - Please choose one

What is the length of each sub-interval, if the interval [1,3] is divided into nsub-intervals of equal length?

▶ 10

Question No: 28 (Marks: 1) - Please choose one

Evaluate

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = ----$$

Question No: 29 (Marks: 1) - Please choose one

$$\left\{\frac{1}{2^n}\right\}_1^n$$

represents the sequence:

$$\frac{-1}{2}, \frac{-1}{4}, \frac{-1}{8}, \dots$$

$$\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$$

 \blacktriangleright

$$0,1,\frac{1}{2},\frac{1}{4},...$$

012

Question No: 30 (Marks: 1) - Please choose one

For a sequence $\{a_n\}$ if the difference between successive terms $a_{n+1}-a_n \leq 0$ then the sequence is known as:

- Increasing
- Decreasing
- ▶ Nondecreasing
- ▶ Nonincreasing

Question No: 31 (Marks: 1) - Please choose one

$$\frac{a_{n+1}}{a_n} > 1$$

For a sequence $\{a_n\}$ if the ratio of successive terms is known as:

then the sequence

▶ Increasing

- Decreasing
- ▶ Nondecreasing
- ▶ Nonincreasing

Question No: 32 (Marks: 1) - Please choose one

If the partial sum of a series is finite then the series will/will be:

▶ Divergent

Convergent

▶ Give no information

Ouestion No: 33 (Marks: 1) - Please choose one

If the geometric series $\begin{array}{c} a+ar+ar^2+ar^3+...+ar^{k-1}+... & where \ (a\neq 0) \\ |r|<1 \end{array} ,$

then which of the following is true for the given series?

Converges

- ▶ Diverges
- ▶ Gives no information

Question No: 34 (Marks: 1) - Please choose one

$$\rho = \lim_{k \to +\infty} \sqrt[k]{u_k}$$
 If where $\rho > 1$ then the series $\sum u_k$ with positive terms will /will be.....?

Convergent

- ▶ Divergent
- ▶ Give no information

Question No: 35 (Marks: 1) - Please choose one

$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k}$$

Which of the following is true for the series

?

- ▶ Arithmetic Series
- ▶ Geometric Series

► Alternating Harmonic Series

▶ Harmonic Series

Question No: 36 (Marks: 1) - Please choose one

.....is the special case of Tylor's theorem.

▶ Roll's Theorem

- ► Picard's Method
- ► Integration
- ► Maclaurin's Theorem

Question No: 37 (Marks: 1) - Please choose one

If f is integrable on a closed interval containing the four points $\emph{a, b, c}$ and \emph{d} then

$$\int_{a}^{d} f(x)dx = \underline{\hspace{1cm}}$$

$$\int_{a}^{b} f(x) \ dx + \int_{a}^{d} f(x) \ dx$$

$$\int_{a}^{c} f(x) \ dx + \int_{b}^{d} f(x) \ dx$$

$$\int_{a}^{d} f(x) \ dx$$

Question No: 38 (Marks: 1) - Please choose one

Suppose f and g are integrable functions on [a, b] and c is a constant, then $\int_{a}^{b} c \left[f(x) + g(x) \right] dx = \underline{\qquad}$

$$\int_{a}^{b} f(cx)dx + \int_{a}^{b} g(cx)dx$$

$$\downarrow \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x)] dx$$

$$\downarrow \int_{a}^{b} f(x)dx + c \int_{a}^{b} g(x)dx$$

$$\downarrow \int_{a}^{b} f(x)dx + c \int_{a}^{b} g(x)dx$$

Question No: 39 (Marks: 1) - Please choose one

What is the difference between the values of the

$$\int_{a}^{b} f(x)dx \text{ and } \int_{a}^{b} f(t)dt$$

integrals

- ► Differ by b-a
- ▶ Differ by a-b

No difference

▶ Differ by b+a

$$\int_{-1}^{2} f(x) dx = 5 \qquad \int_{-1}^{2} g(x) dx = -3$$
If and then which of the following is value
$$\int_{-1}^{2} [f(x) + 2g(x)] dx$$
of ?

▶ -8

► 2 ► 11

Question No: 41 (Marks: 2)

$$\frac{1}{1} + \frac{1}{8} + \frac{1}{27} + \dots + \frac{1}{1000}$$

Express the sum

in sigma notation.

$$\sum_{n=1}^{10} (1/n^3)$$

Question No: 42 (Marks: 2)

Only write down the Maclaurin series for $^{\it e}$

Question No: 43 (Marks: 2)

Evaluate the following integral:

$$\sqrt{x} dx$$

$$= \int_{1}^{4} \sqrt{x} \cdot 1 dx$$

$$= x\sqrt{x} + \int_{1}^{4} 1/\sqrt{x} \cdot 1 dx$$

Question No: 44 (Marks: 3)

Evaluate the following sum:

$$\sum_{k=1}^{6} (k^2 - 5)$$
= -4-1+4+11+20+31=61

Question No: 45 (Marks: 3)

Find a definite integral indicating the area enclosed by the curves $y=x^2$, x>0 and bounded on the sides by the lines y=1 and y=4. But do not evaluate the integral.

Question No: 46 (Marks: 3)

$$a_n = \left\{ \frac{3}{n^2} \right\}_{n=1}^{\infty}$$

Determine whether the following sequence is strictly monotone or $\,$ not.If your answer is yes or no, then give reason .

Yes the sequence is strictly monotone because the denominator is increasing

Question No: 47 (Marks: 5)

The region bounded by the γ -axis, the graph of the equation $x = y^2$ and the line $\gamma = 2$ is revolved about γ -axis. Find the volume of the resulting solid.

Question No: 48 (Marks: 5)

Compute the following sum:

Question No: 49 (Marks: 5)

Use L'Hopital's rule to evaluate the limit

$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{1 + \cos 2x}$$

$$\lim_{x \to \frac{\pi}{2}} (1 - \sin x) = 0 \lim_{x \to \frac{\pi}{2}} (1 + \cos 2x) = 0$$

$$= 0/0$$

So by L'Hopital's rule

$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{1 + \cos 2x}$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{d / dx (1 - \sin x)}{d / dx (1 + \cos 2x)}$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{-\cos x}{-2\sin 2x} = \frac{\cos \frac{\pi}{2}}{2\sin \pi} = 0$$

Question No: 50 (Marks: 10)

$$\sum_{1}^{\infty} \frac{2^{n}}{n(n+2)}$$

Use the Ratio test to determine whether the series diverges.

converges or

$$p = \lim_{x \to \infty} \frac{u_{k+1}}{u_k} =$$

FINALTERM EXAMINATION Fall 2009 Calculus & Analytical Geometry-I

Question No: 1 (Marks: 1) - Please choose one

Let $f^{(x)}$ is a function such that as x approaches a real number a, either from left or right-hand-side, the function values increases or decreases unboundedly then

 $\lim_{x\to a} f(x)$

dx

► Exist

Does not exist

Question No: 2 (Marks: 1) - Please choose one $d(\sec x)$

$$(\sec x)(\tan x)$$

$$(\sec x)(\tan x)$$

$$(\cos \cot x)(\cot x)$$

$$(\cos \cot x)(\cot x)$$

Question No: 3 (Marks: 1) - Please choose one

Consider a function h(x) and a constant c then

$$\frac{d}{dx}\big((c)\left\{h(x)\right\}\big) = \underline{\hspace{1cm}}$$

- **▶** 0
- $\frac{d}{dx}(h(x))$
- $\frac{d}{dx}(h(cx))$
- $c \, \frac{d}{dx} \big(h(x) \big)$

Question No: 4 (Marks: 1) - Please choose one

$$\lim_{x \to -\infty} f(x) = +\infty \quad and \quad \lim_{x \to +\infty} f(x) = +\infty$$

If f is continuous function such that $f = (-\infty, +\infty)$

then f has _____ on $^{(-\infty,+\infty)}$

- ► maximum value but no minimum
- ▶ minimum value but no maximum
- ▶ both maximum and minimum value

Question No: 5 (Marks: 1) - Please choose one

Sigma notation is represented by which of the following Greek letter?

- ► 1/
- \searrow

Question No: 6 (Marks: 1) - Please choose one

In the following figure, the area enclosed is bounded below by :

$$y = x + \epsilon$$

$$y = x^2$$

- x=2
- x = 0

Question No: 7 (Marks: 1) - Please choose one

$$y = x^2 \ and \ y = x + 6$$

At what points the two curves: y = x + u + u + v = x + 0 intersect

- x = 0 and x = 2
- x = 0 and x = 3
- \rightarrow x = 2 and x = 3
- x = -2 and x = 3

Question No: 8 (Marks: 1) - Please choose one

Let the solid generated by the region enclosed between

$$y = \sqrt{x}$$
 ; $x = 1, x = 4$

and the x-axis is revolved about the y-axis. Which of the following equation gives the volumes of a solid by cylindrical shells?

$$V = \int_{1}^{4} 2x \sqrt{x} dx$$

▶

$$V = \int_{0}^{4} 2x \sqrt{x} dx$$

▶

$$V = \int_{-4}^{4} 2x \sqrt{x} dx$$

▶

Question No: 9 (Marks: 1) - Please choose one

Let f is a smooth curve on the interval [a, b]. What is the arc length L of the curve f(x) defined over the interval [a, b]?

$$L = \lim_{\max \Delta x \to 0} \sum_{k=1}^{n} \sqrt{1 + (f'(x^*_k))}$$

▶

$$L = \sum_{k=1}^{n} \sqrt{1 + (f'(x^*_k))} \Delta x_k$$

 $L = \lim_{\max \Delta x \to 0} \sum_{k=1}^{n} \sqrt{1 + (f'(x^*_k))^2} \Delta x_k$

$$L = \sum_{k=1}^{n} \sqrt{1 + (f(x^*_k))} \Delta x$$

•

Question No: 10 (Marks: 1) - Please choose one

For a graph to be symmetric about y-axis means, for each point (x,y) on the graph, the point ------ is also on the graph

Question No: 11 (Marks: 1) - Please choose one

The graph $x = y^2$ is symmetric about -----axis

- X-axis
- ➤ Y-axis
- ▶ Origin

Question No: 12 (Marks: 1) - Please choose one

If a quantity y depends on another quantity x in such a way that each value of x determines exactly one value of y, we say that y is of x

- ▶ relation
- function
- ▶ not a function
- ▶ not a relation

Question No: 13 (Marks: 1) - Please choose one

$$\frac{(x^2-4)}{(x-2)}$$

Domain of the function y = i

- $(-\infty,2)U(2,+\infty)$
- $(-\infty,2)$
- **▶** (-∞,0)

Question No: 14 (Marks: 1) - Please choose one

Tan(x) is continuous every where except at points

$$\pm \frac{k\pi}{2} (k = 1, 3, 5, ...)$$

$$\pm \frac{k\pi}{2}$$
 (k = 2,4,6,...

 \triangleright

$$\pm \frac{k\pi}{2}(k=1,2,3,4,5,6,...)$$

Question No: 15 (Marks: 1) - Please choose one

$$\lim_{x \to 0} \frac{\sin x}{x} = ----$$

- **▶** -1
- ▶ 2
- ► 0 ► 1

Question No: 16 (Marks: 1) - Please choose one

How the series 1-3+5-7+9-11 can be expressed in sigma notation?

$$\sum_{k=0}^{k=5} (-1)^k (2k+1)$$

$$\sum_{k=1}^{k=5} (2k+1)$$

$$\sum_{k=1}^{k=5} (2k+1)$$

ightharpoons

Question No: 17 (Marks: 1) - Please choose one

Let the region bounded by the curve $y=\sqrt[3]{x}$, the x-axis, and the line is revolved about the y-axis to generate a solid. Which of the following equation gives the volume of a solid by cylindrical shells?

$$V = \int\limits_{0}^{3} x^{\frac{3}{2}} dx$$

▶

$$V = 2\pi \int_{0}^{3} \sqrt{x} \, dx$$

$$V = \int_{0}^{3} x \sqrt[3]{x} \ dx$$

 \blacktriangleright

Question No: 18 (Marks: 1) - Please choose one

$$y = \frac{2\sqrt{2}}{3}x^{\frac{3}{2}}; \ 0 \le x \le 2$$

Let

then which of the following is the length of the curve?

$$L = \int_0^2 \sqrt{\left[\frac{d}{dx} \left(\frac{2\sqrt{2}}{3} x^{\frac{3}{2}}\right)\right]^2 dx}$$

Þ

$$L = \int \sqrt{1 + \left[\frac{d}{dx} \left(\frac{2\sqrt{2}}{3} x^{\frac{3}{2}} \right) \right]^2} dx$$

•

Question No: 19 (Marks: 1) - Please choose one

is known as

- ► An even number
- ► Irrational Number
- ► A natural Number
- ▶ Rational Number

Question No: 20 (Marks: 1) - Please choose one

$$f'(x_n) = 0$$
 for some n

For a function f, let

Does the Newton's Method works for approximating the solution of f(x) = 0?

- ➤ Yes
- ► No

Question No: 21 (Marks: 1) - Please choose one

The Mean Value Theorem states that "Let function f be differentiable on (a,b) and continuous on [a, b], then there exist at least one point c in (a,b)

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
$$f(c) = \frac{f(b) - f(a)}{b - a}$$

$$f(c) = \frac{f(b) - f(a)}{b - a}$$

 $f(c) = \frac{f(a) - f(b)}{b - a}$

$$f'(c) = \frac{f(a) - f(b)}{b - a}$$

Question No: 22 (Marks: 1) - Please choose one

$$\frac{d}{dx}[F(x)] = f(x)$$

If there is some function *F* such that

then any function of

F(x) + C is ----- of f(x)the form

- ▶ Derivative
- Antiderivative
- ➤ Slope
- ▶ Maximum value

Question No: 23 (Marks: 1) - Please choose one

If f and g are continues function on an interval [a, b] and $f(x) \ge g(x)$ for $a \le x \le b$, then area is bounded by the lines parallel to:

- ➤ X -axis
- ➤ Y-axis
- ▶ Both X -axis and Y-axis

Question No: 24 (Marks: 1) - Please choose one

What is the sum of following series?

$$1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3$$

$$\frac{n(2n)(2n+1)}{6}$$

(n+1)(n+2)

$$\left[\frac{n(n+2)}{2}\right]^2$$

Question No: 25 (Marks: 1) - Please choose one

$$\frac{5}{7} \times 1^2 + \frac{5}{7} \times 2^2 + \frac{5}{7} \times 3^2 + \frac{5}{7} \times 4^2 \dots + \frac{5}{7} \times n^2 = \underline{\hspace{1cm}}$$

$$\frac{5n(n+1)}{14}$$

$$\frac{5n^2(n+1)^2}{14}$$

$$\frac{5(n+1)(2n+1)}{42}$$

Question No: 26 (Marks: 1) - Please choose one

$$\int_{a}^{a} f(x)dx = \underline{\hspace{1cm}}$$

If point a is in the domain of function f , then

Question No: 27 (Marks: 1) - Please choose one

If $a_1 > a_2 > a_3 > \dots > a_n > \dots$, then a sequence $\{a_n\}$ is

- ▶ Increasing
- ▶ Nondecreasing
- Decreasing
- ▶ Nonincreasing

Question No: 28 (Marks: 1) - Please choose one

For a sequence $a_{n+1} - a_n \le 0$ then the sequence is known as:

- ► Increasing
- ▶ Decreasing
- Nondecreasing
- Nonincreasing

Question No: 29 (Marks: 1) - Please choose one

$$\frac{a_{n+1}}{a} < 1$$

For a sequence if the ratio of successive terms is known as:

then the sequence

- ▶ Increasing
- ▶ Decreasing
- Nondecreasing
- ▶ Nonincreasing

Question No: 30 (Marks: 1) - Please choose one

$$\frac{a_{n+1}}{a_n} \ge 1$$

For a sequence $\{a_n\}$ if the ratio of successive terms is known as :

then the sequence

- ▶ Increasing
- Decreasing
- ▶ Nondecreasin
- ▶ Nonincreasing

Question No: 31 (Marks: 1) - Please choose one

$$a_n = \left\{\frac{1}{n}\right\}_{n=1}^{\infty}$$

Which of the following option is true for the sequence

2

- ▶ Increasing
- Decreasing
- ▶ Nonincreasing
- ▶ Nondecreasing

Question No: 32 (Marks: 1) - Please choose one

If the partial sum of a series is finite then the series will/will be:

- ▶ Divergent
- ▶ Convergent
- ▶ Give no information

Question No: 33 (Marks: 1) - Please choose one

$$a + ar + ar^{2} + ar^{3} + ... + ar^{k-1} + ...$$
 where $(a \neq 0)$

If the geometric series |r| < 1

then which of the following is true for the given series?

- Converges
- ▶ Diverges
- ▶ Gives no information

Question No: 34 (Marks: 1) - Please choose one

$$\rho = \lim_{k \to +\infty} \frac{u_{k+1}}{u_k}$$
 If where $\rho > 1$ then the series $\sum u_k$ with positive terms will /will be.....?

- Convergent
- ▶ Divergent
- ► Give no information

Question No: 35 (Marks: 1) - Please choose one

$$\rho = \lim_{k \to +\infty} \sqrt[k]{u_k}$$
If where $\rho > 1$ then the series $\sum u_k$ with positive terms will /will be.....?

- ► Convergent
- ▶ Divergent
- ▶ Give no information

Question No: 36 (Marks: 1) - Please choose one

In alternating series test, which one of the following condition must be satisfied?

$$\lim_{k \to \infty} a_k = 1$$

$$a_1 > a_2 > a_3 \dots > a_k > \dots$$

$$a_1 \le a_2 \le a_3 \dots \le a_k \le \dots$$

Question No: 37 (Marks: 1) - Please choose one

$$\sum_{k=1}^{\infty} (-1)^n a_k$$

A series of the form

is called

Alternating series

- ▶ Geometric series
- ▶ Arithmetic series
- ▶ Harmonic series

Question No: 38 (Marks: 1) - Please choose one

Which of the following is the Maclaurin series for e^x ?

$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^k}{k!} + \dots$$

$$x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^k}{k!} + \dots$$

$$1+x+\frac{x^3}{3!}+...+\frac{x^k}{k!}+...$$

$$1-x+\frac{x^3}{3!}-...-\frac{x^k}{k!}-...$$

Question No: 39 (Marks: 1) - Please choose one

Which of the following is the work done W if an object moves in the positive direction along a coordinate line while subject to a force F(x) in the direction of motion over an interval [0,3]?

$$W = \int_{2}^{3} 3x dx$$

$$W = \int_{0}^{3} 3x dx$$

$$W = \int_{3}^{0} F(x) dx$$

▶

Question No: 40 (Marks: 1) - Please choose one

Which of the following is the spring constant k if a spring whose natural length is 2m exerts a force of 3N when stretched 1m beyond its natural length?

- **▶** 3 *x*
- ► 3 *N/m*
- **▶** 2 *m*
- ► 3 *m/N*

Question No: 41 (Marks: 2)

Evaluate the following integral by substitution method.

$$\int x (2x^2 + 1)^{\frac{2}{3}} dx$$

Question No: 42 (Marks: 2)

Find the limits of the integral indicating the area bounded by the

$$y = x^2 \text{ and } y = x + 6$$
curves
Sol,

Question No: 43 (Marks: 2)

What will be the amount of work done if an object moves 7m in the direction of a force of 70N?

Question No: 44 (Marks: 3)

Evaluate the following integral:

$$\int \frac{5 - 6\sin^2 x}{\sin^2 x} \ dx$$

Question No: 45 (Marks: 3)

Find a definite integral indicating the area of the surface generated by revolving the curve $y=\sqrt[3]{3x}$; $0 \le y \le 4$ about the x- axis. But do not evaluate the integral.

Question No: 46 (Marks: 3)

Find the spring constant $\footnote{'}K$; if a force of 10N is required to stretch a spring from its natural length of 4.8m to a length of 6.8m?

Question No: 47 (Marks: 5)

$$\frac{d}{dx}[f(x)] = 12x^2 - 6x + 1$$

Let . Find f(x)

Sol,

Question No: 48 (Marks: 5)

Use the cylindrical shell to find the volume of the solid generated when the region enclosed by the curve $y=x^3$, x=1, y=0 is revolved about the y-axis.

Question No: 49 (Marks: 5)

Determine whether the sequence u_n converges or diverges; if it converges then find its limit;

$$a_n = \frac{3n^4 + 1}{4n^2 - 1}$$

where

Question No: 50 (Marks: 10)

Find the area of the region that is enclosed by the curves $y = x^2$ and $y = \sqrt{x}$

$$x = \frac{1}{4} \text{ and } x = 1$$

between

FINALTERM EXAMINATION Fall 2009

Calculus & Analytical Geometry-I

Question No: 1 (Marks: 1) - Please choose one

Let $f^{(x)}$ is a function such that as x approaches a real number a, either from left or right-hand-side, the function values increases or decreases unboundedly then

 $\lim_{x\to a} f(x)$

▶ Exist

Does not exist

Question No: 2 (Marks: 1) - Please choose one

$$\frac{d(\sec x)}{dx} =$$

$(\sec x)(\tan x)$ $(\cos x)(\tan x)$ $(\cos x)(\cot x)$

 $(co \sec x)(\tan x)$

Question No: 3 (Marks: 1) - Please choose one

Consider a function h(x) and a constant c then

$$\frac{d}{dx}\big((c)\left\{h(x)\right\}\big) = \underline{\hspace{1cm}}$$

- **▶** 0
- $\int \frac{d}{dx} (h(x))$
- $\frac{d}{dx}(h(cx))$
- $c \frac{d}{dx} (h(x))$

Question No: 4 (Marks: 1) - Please choose one

$$\lim_{x \to \infty} f(x) = +\infty \quad and \quad \lim_{x \to +\infty} f(x) = +\infty$$

If f is continuous function such that $f = (-\infty, +\infty)$

then f has _____ on $(-\infty, +\infty)$

- ▶ maximum value but no minimum
- ▶ minimum value but no maximum
- ▶ both maximum and minimum value

Question No: 5 (Marks: 1) - Please choose one

Sigma notation is represented by which of the following Greek letter?

Question No: 6 (Marks: 1) - Please choose one

In the following figure, the area enclosed is bounded below by:

$$v = x + 6$$

$$y = x^2$$

$$x = 2$$

$$x = 0$$

Question No: 7 (Marks: 1) - Please choose one

At what points the two curves: $y = x^2$ and y = x + 6 intersect?

$$x = 0$$
 and $x = 2$

$$x = 0$$
 and $x = 3$

$$x = 2$$
 and $x = 3$

$$x = -2 \text{ and } x = 3$$

Question No: 8 (Marks: 1) - Please choose one

Let the solid generated by the region enclosed between

$$y = \sqrt{x}$$
 ; $x = 1, x = 4$

and the x-axis is revolved about the y-axis. Which of the following equation gives the volumes of a solid by cylindrical shells?

$$V = \int_{1}^{4} 2\pi x \sqrt{x} dx$$

$$V = \int_{1}^{4} 2x \sqrt{x} dx$$

▶

$$V = \int_{0}^{4} 2x \sqrt{x} dx$$

 \blacktriangleright

$$V = \int_{-4}^{4} 2x \sqrt{x} dx$$

▶

Question No: 9 (Marks: 1) - Please choose one

Let f is a smooth curve on the interval [a, b]. What is the arc length L of the curve f(x) defined over the interval [a, b]?

$$L = \lim_{\max \Delta x \to 0} \sum_{k=1}^{n} \sqrt{1 + (f'(x^*_k))}$$

$$L = \sum_{k=1}^{n} \sqrt{1 + (f'(x^*_{k}))} \Delta x_{k}$$

 $L = \lim_{\max \Delta x \to 0} \sum_{k=1}^{n} \sqrt{1 + (f'(x^*_k))^2} \Delta x_k$

$$L = \sum_{k=1}^{n} \sqrt{1 + (f(x^*_k))} \Delta x$$

▶

Question No: 10 (Marks: 1) - Please choose one

For a graph to be symmetric about y-axis means, for each point (x,y) on the graph, the point ----- is also on the graph

Question No: 11 (Marks: 1) - Please choose one

The graph $x = y^2$ is symmetric about -----axis

- X-axis
- ➤ Y-axis
- ▶ Origin

Ouestion No: 12 (Marks: 1) - Please choose one

If a quantity y depends on another quantity x in such a way that each value of x determines exactly one value of y, we say that y is of x

- ▶ relation
- function
- ▶ not a function
- ▶ not a relation

Question No: 13 (Marks: 1) - Please choose one

$$\frac{(x^2-4)}{(x-2)}$$

Domain of the function y =

 $(-\infty,2)U(2,+\infty)$

Question No: 14 (Marks: 1) - Please choose one

Tan(x) is continuous every where except at points

$$\pm \frac{k\pi}{2} (k = 1, 3, 5, ...)$$

$$\pm \frac{k\pi}{2} (k = 2, 4, 6, ...)$$

$$\pm \frac{k\pi}{2}$$
 (k = 1, 2, 3, 4, 5, 6,...)

Question No: 15 (Marks: 1) - Please choose one

$$\lim_{x \to 0} \frac{\sin x}{x} = \dots$$

▶ -1

▶ 2

Question No: 16 (Marks: 1) - Please choose one

How the series 1-3+5-7+9-11 can be expressed in sigma notation?

$$\sum_{k=0}^{k=5} (-1)^k (2k+1)$$

$$\sum_{k=1}^{k=5} (2k+1)$$

 $\sum_{k=1}^{k=5} (2k+1)$

Question No: 17 (Marks: 1) - Please choose one

x = 3Let the region bounded by the curve , the x-axis, and the line

is revolved about the y-axis to generate a solid. Which of the following equation gives the volume of a solid by cylindrical shells?

$$V = \int_{1}^{3} x^{\frac{3}{2}} dx$$

$$V = 2\pi \int_{0}^{3} \sqrt{x} \, dx$$

$$V = \int_{0}^{3} 2\pi x \sqrt[3]{x} \ dx$$

$$V = \int_{0}^{3} x \sqrt[3]{x} \ dx$$

Question No: 18 (Marks: 1) - Please choose one

$$y = \frac{2\sqrt{2}}{3}x^{\frac{3}{2}}; \ 0 \le x \le 2$$

Let

then which of the following is the length of the curve?

$$L = \int_0^2 \sqrt{\left[\frac{d}{dx} \left(\frac{2\sqrt{2}}{3}x^{\frac{3}{2}}\right)\right]^2} dx$$

$$L = \int \sqrt{1 + \left[\frac{d}{dx} \left(\frac{2\sqrt{2}}{3}x^{\frac{3}{2}}\right)\right]^2} dx$$

$$L = \int_{0}^{2} \sqrt{1 + \left[\frac{d}{dx} \left(\frac{2\sqrt{2}}{3} x^{\frac{3}{2}} \right) \right]^{2}} dx$$

$$L = \int_{0}^{2} \sqrt{1 + \left[\frac{d}{dx} \left(\frac{2\sqrt{2}}{3} x^{\frac{3}{2}} \right) \right]} dx$$

Question No: 19 (Marks: 1) - Please choose one

is known as

- ► An even number
- ► Irrational Number
- ► A natural Number

▶ Rational Number

Question No: 20 (Marks: 1) - Please choose one

$$f'(x_n) = 0$$
 for some n

For a function f, let

Does the Newton's Method works for approximating the solution of f(x) = 0?

No

Question No: 21 (Marks: 1) - Please choose one

The Mean Value Theorem states that "Let function f be differentiable on (a,b) and continuous on [a, b], then there exist at least one point c in (a,b)

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
$$f(c) = \frac{f(b) - f(a)}{b - a}$$

$$f(c) = \frac{f(a) - f(b)}{1 - f(b)}$$

 $f'(c) = \frac{f(a) - f(b)}{b - a}$

Question No: 22 (Marks: 1) - Please choose one

$$\frac{d}{dx}[F(x)] = f(x)$$

If there is some function *F* such that

then any function of

the form
$$F(x) + C$$
 is ----- of $F(x)$

- Derivative
- Antiderivative
- ➤ Slope
- ► Maximum value

Question No: 23 (Marks: 1) - Please choose one

If f and g are continues function on an interval [a, b] and $f(x) \ge g(x)$ for $a \le x \le b$, then area is bounded by the lines parallel to:

- ➤ X -axis
- Y-axis
- ▶ Both X -axis and Y-axis

Question No: 24 (Marks: 1) - Please choose one

What is the sum of following series?

$$1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3$$

$$\frac{n(2n)(2n+1)}{6}$$

>

$$\frac{(n+1)(n+2)}{2}$$

$$\left\lceil \frac{n(n+2)}{2} \right\rceil^2$$

▶

Question No: 25 (Marks: 1) - Please choose one

$$\frac{5}{7} \times 1^2 + \frac{5}{7} \times 2^2 + \frac{5}{7} \times 3^2 + \frac{5}{7} \times 4^2 \dots + \frac{5}{7} \times n^2 = \underline{\hspace{1cm}}$$

$$\frac{5n(n+1)(2n+1)}{42}$$

$$\frac{5n(n+1)}{14}$$

$$\frac{5n^2(n+1)^2}{14}$$

$$5(n+1)(2n+1)$$

 $\frac{5(n+1)(2n+1)}{42}$

Question No: 26 (Marks: 1) - Please choose one

$$\int_{0}^{a} f(x)dx = \underline{\hspace{1cm}}$$

If point a is in the domain of function f, then

 \rightarrow f(x)

Question No: 27 (Marks: 1) - Please choose one

 $\begin{array}{c} a_1 > a_2 > a_3 > > a_n > \\ \text{If} \qquad \qquad \text{, then a sequence} \quad \text{is} \end{array}$

- ▶ Increasing
- ▶ Nondecreasing
- ▶ Decreasing
- ▶ Nonincreasing

Question No: 28 (Marks: 1) - Please choose one

For a sequence $a_{n+1}-a_n \leq 0$ then the sequence is known as:

- ▶ Increasing
- Decreasing
- ▶ Nondecreasing
- ▶ Nonincreasing

Question No: 29 (Marks: 1) - Please choose one

$$\frac{a_{n+1}}{a} < 1$$

if the ratio of successive terms

then the sequence

is known as:

- ▶ Increasing
- ▶ Decreasing
- ▶ Nondecreasing
- ▶ Nonincreasing

Question No: 30 (Marks: 1) - Please choose one

$$\frac{a_{n+1}}{a} \ge 1$$

For a sequence if the ratio of successive terms is known as:

then the sequence

- ▶ Increasing
- ▶ Decreasing
- ▶ Nondecreasing
- ▶ Nonincreasing

Question No: 31 (Marks: 1) - Please choose one

$$a_n = \left\{\frac{1}{n}\right\}_{n=1}^{\infty}$$

Which of the following option is true for the sequence

- ▶ Increasing
- Decreasing
- ▶ Nonincreasing
- ▶ Nondecreasing

Question No: 32 (Marks: 1) - Please choose one

If the partial sum of a series is finite then the series will/will be:

- ▶ Divergent
- Convergent
- ▶ Give no information

Ouestion No: 33 (Marks: 1) - Please choose one

$$a + ar + ar^{2} + ar^{3} + ... + ar^{k-1} + ...$$
 where $(a \neq 0)$

If the geometric series |r| < 1

then which of the following is true for the given series?

- Converges
- ▶ Diverges
- ▶ Gives no information

Ouestion No: 34 (Marks: 1) - Please choose one

$$\rho = \lim_{k \to +\infty} \frac{u_{k+1}}{u_k}$$

with positive terms will /will be.....?

- Convergent
- ▶ Divergent
- ► Give no information

Ouestion No: 35 (Marks: 1) - Please choose one

$$\rho = \lim_{k \to +\infty} \sqrt[k]{u_k}$$
If where $\rho > 1$ then the series
$$\sum u_k$$
 with positive terms will /will be.....?

- ▶ Convergent
- ▶ Divergent
- ► Give no information

Question No: 36 (Marks: 1) - Please choose one

In alternating series test, which one of the following condition must be satisfied?

Question No: 37 (Marks: 1) - Please choose one

$$\sum_{k=1}^{\infty} (-1)^n a_k$$

A series of the form

is called

► Alternating series

- ▶ Geometric series
- ▶ Arithmetic series
- ▶ Harmonic series

Question No: 38 (Marks: 1) - Please choose one

Which of the following is the Maclaurin series for e^x ?

$$1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...+\frac{x^k}{k!}+...$$

$$x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^k}{k!} + \dots$$

1+x+
$$\frac{x^3}{21}$$
+...+ $\frac{x^k}{k1}$ +...

$$1 - x + \frac{x^3}{3!} - \dots - \frac{x^k}{k!} - \dots$$

Question No: 39 (Marks: 1) - Please choose one

Which of the following is the work done W if an object moves in the positive direction along a coordinate line while subject to a force F(x) in the direction of motion over an interval [0,3]?

$$W = \int_{2}^{3} 3x dx$$

$$W = \int_{0}^{3} 3x dx$$

$$W = \int_{0}^{3} F(x) dx$$

$$W = \int_{3}^{0} F(x) dx$$

▶

Question No: 40 (Marks: 1) - Please choose one

Which of the following is the spring constant k if a spring whose natural length is 2m exerts a force of 3N when stretched 1m beyond its natural length?

- **▶** 3 *x*
- ► 3 N/m
- **▶** 2 *m*
- ► 3 *m/N*

Question No: 41 (Marks: 2)

Evaluate the following integral by substitution method.

$$\int x (2x^2 + 1)^{\frac{2}{3}} dx$$

Question No: 42 (Marks: 2)

Find the limits of the integral indicating the area bounded by the

curves
$$y = x^2$$
 and $y = x + 6$. Sol,

Question No: 43 (Marks: 2)

What will be the amount of work done if an object moves 7m in the direction of a force of 70N?

Question No: 44 (Marks: 3)

Evaluate the following integral:

$$\int \frac{5 - 6\sin^2 x}{\sin^2 x} \ dx$$

Question No: 45 (Marks: 3)

Find a definite integral indicating the area of the surface generated by revolving the curve $y=\sqrt[3]{3x}$; $0 \le y \le 4$ about the x- axis. But do not evaluate the integral.

Question No: 46 (Marks: 3)

Find the spring constant $\footnote{'}K$; if a force of 10N is required to stretch a spring from its natural length of 4.8m to a length of 6.8m?

Question No: 47 (Marks: 5)

$$\frac{d}{dx}[f(x)] = 12x^2 - 6x + 1$$

Let . Find f(x)

Sol,

Question No: 48 (Marks: 5)

Use the cylindrical shell to find the volume of the solid generated when the region enclosed by the curve $y=x^3$, x=1, y=0 is revolved about the *y*-axis.

Question No: 49 (Marks: 5)

Determine whether the sequence ${a_n \atop \text{converges}}$ converges or diverges; if it converges then find its limit;

$$a_n = \frac{3n^4 + 1}{4n^2 - 1}$$

where

Question No: 50 (Marks: 10)

Find the area of the region that is enclosed by the curves $y = x^2$ and $y = \sqrt{x}$

$$x = \frac{1}{4}$$
 and $x = 1$

between

FINALTERM EXAMINATION Fall 2008 (Session - 1)

Calculus & Analytical Geometry-I

Question No: 1 (Marks: 1) - Please choose one $\frac{\int\limits_{y=f(x)} f(x)}{\text{then the average rate of change of y with respect to x over the interval}} \text{If } [x_0, x_1]$ is the Joining the points $\frac{(x_0, f(x_0)) and(x_1, f(x_1))}{\text{on the graph of f}}$

- ► Slope of the secant line
- ► Slope of tangent line
- ► Secant line
- ▶ none of these

Question No: 2 (Marks: 1) - Please choose one

$$\frac{(x^2-4)}{(x-2)}$$

Natural domain of

$(-\infty,2)U(2,+\infty)$

- $(-\infty,2]$
- (-∞,0
- ► None of these

Question No: 3 (Marks: 1) - Please choose one

The equation $(x+4)^2+(y-1)^2=6$ represents a circle having center at and radius and

$(-4,1), \sqrt{6}$

- (-4,1),6
- $(-4,-1),\sqrt{6}$
- ► None of these

Question No: 4 (Marks: 1) - Please choose one

 $\rho = \lim_{k \to \infty} \sqrt[k]{u_k} = \lim_{k \to \infty} (u_k)^{\frac{1}{k}}$ eries be a series with positive terms and suppose that then the series

► Converges

▶ Diverges

- ► May converge or diverge
- ► None of these

Question No: 5 (Marks: 1) - Please choose one

 $\sum_{k=0}^{\infty} u_k \text{ and } \sum_{k=0}^{\infty} v_k \text{ are convergent series then } (\sum_{k=0}^{\infty} u_k + \sum_{k=0}^{\infty} v_k) \text{ and } (\sum_{k=0}^{\infty} u_k - \sum_{k=0}^{\infty} v_k)$ will beand.....and.....

- ► Convergent, convergent
- ► Divergent, divergent

► Convergent, divergent

► Divergent, convergent

Question No: 6 (Marks: 1) - Please choose one

 $\{\frac{1}{2^n}\}_{-1}^n$ The

notation

represents the sequence

$$2,1,\frac{1}{2},\frac{1}{4},...$$

0,1,2,3...

$$0,1,\frac{1}{2},\frac{1}{4},...$$

 \blacktriangleright

▶ None of these

Question No: 7 (Marks: 1) - Please choose one

f is continuous on (a,b] but does not have a limit from the right then the integral

$$\int_{a}^{b} f(x)dx = \lim_{a \to a} \int_{a}^{b} f(x)dx$$

defined by

is called Integral

- ▶ Improper
- ▶ Proper
- ► None of these

Question No: 8 (Marks: 1) - Please choose one

An object is displaced 1m by a force of 1N then the work done W is

- **▶** 2
- **▶** 0
- ► None of these
- ▶ 1

Question No: 9 (Marks: 1) - Please choose one

__ II

f is a smooth function on [a,b] then the arc length L of the curve y=f(x) from x=a to x=b will be

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} dx$$

$$L = \int_{0}^{b} \sqrt{1 + [f'(x)]} dx$$

▶

$$L = \int_{0}^{a} \sqrt{1 + [f'(x)]} dx$$

▶

► None of these

Question No: 10 (Marks: 1) - Please choose one

Τf

f is a smooth function on [0,3] then the arc length L of the curve y=f(x) from x=0 to x=3 will be

$$L = \int_{0}^{3} \sqrt{1 + [f'(x)]^{2}} dx$$

$$L = \int_{1}^{b} \sqrt{1 + [f'(x)]^2}$$

▶

$$L = \int_{0}^{3} \sqrt{1 + [f'(x)]^{2}} dy$$

•

► None of these

Question No: 11 (Marks: 1) - Please choose one

Вν

using cylindrical shell to find volume of the solid when the region R in the first quadrant y = 3x and $y = 2x^2$

enclosed between

is revolved about the x-axis

$$V = \int_{0}^{\frac{3}{2}} 2\pi x (3x - 2x^{2}) dx$$

$$V = \int_{-2}^{\frac{3}{2}} x(3x - 2x^2) dx$$

▶

$$V = \int_{0}^{\frac{3}{2}} 2\pi (3x - 2x^2) dx$$

► None of these

Question No: 12 (Marks: 1) - Please choose one

By using cylindrical shell to find volume of the solid when the region R in the first quadrant enclosed between represented by $y=x \ and \ y=x^2 \ \text{is revolved about the y-axis is}$

$$V = \int_{0}^{3} 2\pi x (x - x^2) dx$$

▶

$$V = \int_{0}^{1} x(x - x^2) dx$$

▶ None of these

Question No: 13 (Marks: 1) - Please choose one

If

$$\int_{a}^{a} f(x)dx =$$

a is in the domain of f, then

▶ None of these

Question No: 14 (Marks: 1) - Please choose one

$$\int_{0}^{2} x^{2} dx$$

Consider the integral

, the area on right is bounded by

$$y = x$$

$$\rightarrow$$
 $x=2$

$$x=0$$

► None of these

Question No: 15 (Marks: 1) - Please choose one

The series 1-3+5-7+9-11 may written as in sigma notation

$$\sum_{k=0}^{k=5} (-1)^k (2k+1)$$

$$\sum_{k=1}^{k=5} (2k+1)$$

► None of these

Question No: 16 (Marks: 1) - Please choose one

$$\overline{4^2+5^2+6^2+7^2}$$
 in sigma notation may be represented as

$$\sum_{k=2}^{k=7} k^2$$

 $\sum_{k=7}^{k=7} (k+1)^2$

▶ None of these

Question No: 17 (Marks: 1) - Please choose one

If

a function f is on a closed interval [a,b] ,then f has both a maximum and minimum value on [a,b]

▶ Continuous

- ▶ Discontinuous
- **▶** Differentiable
- ► None of these

Question No: 18 (Marks: 1) - Please choose one

Let

f be a function on an interval, and x_1 and x_2 denote the points in that interval, if $f(x_1) < f(x_2)$ whenever

 $x_1 < x_2$ then the we can say that f is

Increasing function

- **▶** Decreasing function
- ► Constant function
- ► None of these

Question No: 19 (Marks: 1) - Please choose one

____ If

a function satisfies the conditions

f(c) is defined

$$\lim_{x \to c^{+}} f(x)$$
Exists
$$\lim_{x \to c^{+}} f(x) = f(c)$$

Then the function is said to be

Continuous at c

- ► Continuous from left at c
- ► Continuous from right at c
- ► None of these

Question No: 20 (Marks: 1) - Please choose one

For a function f(x) to be continuous on interval (a,b) the function must be continuous

► At all point in (a,b)

- ► Only at a and b
- ► At mid point of a and b
- ► None of these

Question No: 21 (Marks: 2)

$$a_{n+1} = \frac{1}{3}(a_n + \frac{1}{a_n})$$
 for $n \ge 1$ and $a_1 = 2$

Write down the first two term of the sequence

Question No: 22 (Marks: 2)

Find

the integral of the surface area of the portion of the sphere generated by revolving the $y=\sqrt{2-x^2}$, $0\le x\le \frac{1}{3}$

curve

(Note: Just find the integral do not solve the integral)

Question No: 23 (Marks: 2)

$$\int_{2}^{5} f(x)dx \qquad \int_{2}^{3} f(x)dx = 7, \int_{3}^{4} f(x)dx = 2, \int_{5}^{4} f(x)dx = 5$$
Calculate if

$$\int_{2}^{3} f(x)dx = 7, \int_{3}^{4} f(x)dx = 2, \int_{5}^{4} f(x)dx = 5$$

$$\int_{2}^{5} f(x)dx = 7 + 2 - 5 = 4$$

Question No: 24 (Marks: 3)

_____ Find

the first two Taylor polynomials for $\ln x$ about x=3

Question No: 25 (Marks: 3)

_____Let

Find

the curve $y=x^{\frac{7}{2}}$; $0 \le y \le 2$, then find the surface area generated by revolving the curve. (But do not evaluate)

Question No: 26 (Marks: 3)

$$\frac{1}{1} + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{7225}$$

Express the sum

in sigma notation but do not evaluate.

$$\frac{1}{1} + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{7225}$$

$$\sum_{k=1}^{7225} k^3 + 1$$

Question No: 27 (Marks: 5)

the first four nonzero terms of the Taylor series generated by f at x=a $f(x) = \frac{1}{1-x}$ at x=2

Question No: 28 (Marks: 5)

Evaluate the Definite Integral using the First fundamental Theorem of Calculus

$$\int_{0}^{1} (x^{5} - x^{3} + 2x) dx$$
Let $u = (x^{5} - x^{3} + 2x)$

$$\int_{0}^{1} (u) dx$$

Question No: 29 (Marks: 5)

Express the definite integrals as limits (Do not evaluate the integrals)

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(1 + Cosx\right) dx$$

$$\frac{\frac{\pi}{2}}{\frac{\pi}{2}} (1 + Cosx) dx$$

$$\int_{-\pi}^{\frac{\pi}{2}} \lim_{\max xk \to 0} \sum_{-\pi}^{\frac{\pi}{2}} (1 + \cos x) dx$$

Question No: 30 (Marks: 10)

Find

the region enclosed by the curves and also find the area

$$y = x^2$$
, $y = \sqrt{x}$, $x = \frac{1}{4}$, $x = 1$

Question No: 31 (Marks: 10)

Use x_k^* as the left end point of each subinterval to find the area under y = mx over the interval [a,b], where m > 0 and $a \ge 0$

Solution on next page

Suppose
$$a = 1$$
 $b = 2$ so $[a,b] = [1,2]$

$$x_k^* = x_{k-1} = a + (k-1)\Delta x \qquad (formula for left end point)$$

$$\Delta x = \frac{b-a}{n} = \frac{2-1}{n} = \frac{1}{n}$$
Suppose k th has area
$$f(x_{k^*})\Delta x = x_{k^*}\Delta x$$

$$\left[1 + \frac{k}{n}\right] \frac{1}{n}$$

$$\sum_{k=1}^{n} f(x_{k^*})\Delta x = \sum_{k=1}^{n} [1+k-1]$$
Areaby solving
$$A = \lim_{\delta x \to 0} \sum_{k=1}^{n} f(x_{k^*})\Delta x = \lim_{\delta x \to 0} \left[\frac{3}{2} - 1 + \frac{1}{2n}\right]$$

$$= \frac{3}{2} - 1 + 0$$

FINALTERM EXAMINATION 2009 (Session - 2)

Calculus & Analytical Geometry-I

Question No: 1 (Ma	ırks: 1) - F	Please choo	se one
---------------------	-----------------	-------------	--------

According to Power-Rule of differentiation, if $f(x) = x^n$ where n is a real number, then

$$\frac{d}{dx}[x^n] = \sum_{n=1}^{\infty} x^{n-1}$$

$$\sum_{n=1}^{\infty} nx^{n+1}$$

Question No: 2 (Marks: 1) - Please choose one

If a function g is differentiable at a point x and a function f is differentiable at a point g(x), then the _____ is differentiable at point x .

- Composition (f o g)Quotient (f/g)
- ► Product (f.g)
- **►** Sum (f + g)

Question No: 3 (Marks: 1) - Please choose one

$$y = f(g(h(x)))$$

1

$$u = g(h(x))$$

$$v = h(x) \qquad \frac{dy}{dx} = \underline{\hspace{1cm}}$$

Question No: 4 (Marks: 1) - Please choose one

If a function f is on a closed interval [a,b], then f has both maximum and minimum value on [a,b].

- ▶ Continuous
- ▶ Discontinuous
- ▶ None of these

Question No: 5 (Marks: 1) - Please choose one

$$\int_{a}^{x} \frac{t^{2}}{2} dt$$

The expression

, represents a function of :

- Question No: 6 (Marks: 1) Please choose one

$$\int cf(x)dx = \underline{\hspace{1cm}}$$

if c is a constant

Question No: 7 (Marks: 1) - Please choose one

In the following figure, the area enclosed is bounded below by:

$$y = x + 0$$

$$y = x^2$$

x = 0

Question No: 8 (Marks: 1) - Please choose one

 $y = x^2 \ and \ y = x + 6$ At what points the two curves:

intersect?

$$x = 0$$
 and $x = 2$

$$x = 0 \text{ and } x = 3$$

$$x = 2 \text{ and } x = 3$$

$$x = -2 \text{ and } x = 3$$

Question No: 9 (Marks: 1) - Please choose one

What is the sum of following series?

$$\frac{n+1}{2}$$

$$\frac{(n+1)(n+2)}{2}$$

$$\underline{n(n+2)}$$

n(n+1)

Question No: 10 (Marks: 1) - Please choose one

If
$$b > 0$$
 then $\frac{d}{dx}[b^x] = \underline{\hspace{1cm}}$

- $\ln b$

Question No: 11 (Marks: 1) - Please choose one

Let S be a solid bounded by two parallel planes perpendicular to the x-axis at x = a and x = b. If , for each x in [a,b], the cross-section area of S perpendicular to the x-axis is A(x), then what is the volume of the solid?

$$V = \int_{a}^{b} A(y) dx$$

$$V = \int_{a}^{A(x)} [b - a] dx$$

$$\blacktriangleright$$

$$V = \int_{0}^{A(x)} [b+a]dx$$

▶

Question No: 12 (Marks: 1) - Please choose one

Let the solid generated by the region enclosed between

$$y = \sqrt{x} \quad ; \quad x = 1, x = 4$$

and the x-axis is revolved about the y-axis. Which of the following equation gives the volumes of a solid by cylindrical shells?

$$V = \int_{1}^{4} 2x \sqrt{x} dx$$

▶

$$V = \int_{0}^{4} 2x \sqrt{x} dx$$

•

$$V = \int_{1}^{4} 2x \sqrt{x} dx$$

_

Question No: 13 (Marks: 1) - Please choose one

If slope m of a none vertical line is m =1 then the angle of inclination of the line is

 $\triangleright \frac{\frac{\pi}{2}}{\frac{\pi}{2}}$

•

Question No: 14 (Marks: 1) - Please choose one

The PYTHAGORAS theorem describes the relationship between the sides of

- Right angle triangle
- ► Isoceleous triangle
- ► Equilateral triangle

Question No: 15 (Marks: 1) - Please choose one

If a quantity y depends on another quantity x in such a way that each value of x determines exactly one value of y , we say that $\ y$ is of x

- ▶ relation
- ▶ function
- ▶ not a function
- ▶ not a relation

Question No: 16 (Marks: 1) - Please choose one

The graph of the equation $y = x^2 - 4x + 5$ will represent

- Parabola
- ➤ Straight line
- ► Two straight lines
- ► Ellipse

Question No: 17 (Marks: 1) - Please choose one

$$\lim_{x \to a} f(x) = \dots where f(x) = k$$

The

(k is a constant)

Question No: 18 (Marks: 1) - Please choose one

$$\int \frac{1}{x^2 + 2} \ dx$$

Consider the indefinite integral

Let
$$t = x^2 + 2$$

Is the following substitution correct?

$$\int \frac{1}{x^2 + 2} dx = \int \frac{1}{t} dt$$

► Yes

► No

Question No: 19 (Marks: 1) - Please choose one

$$\log_b \frac{1}{t} = \underline{\hspace{1cm}}$$

$$\log_b t$$

$$1 - \log_b t$$

$$1 + \log_b t$$

 $-\log_{b} t$

Question No: 20 (Marks: 1) - Please choose one

How the series 1-3+5-7+9-11 can be expressed in sigma notation?

$$\sum_{k=0}^{k=5} (-1)^k (2k+1)$$

$$\sum_{k=1}^{k=5} (-1)^k (2k+1)^k$$

>

$$\sum_{k=1}^{k=5} (2k+1)$$

•

$$\sum_{k=1}^{k=5} (2k+1)$$

 \blacktriangleright

Question No: 21 (Marks: 1) - Please choose one

$$\sum_{k=1}^{n} f(x_{k}^{*}) \Delta x_{k}$$

The sum

is known as:

- ► Riemann Sum
- ► General Sum
- ► Integral Sum
- ► Geometric Sum

Question No: 22 (Marks: 1) - Please choose one

$$\sum_{k=1}^{n} f(x_{k}^{*}) \Delta x_{k}$$

What does 'n' represent in the Riemann Sum

- ► No. of Circles
- ▶ No. of Subintervals
- ▶ No. of Loops
- ▶ No. of Squares

Question No: 23 (Marks: 1) - Please choose one

If w and v are continuous functions of y on an interval [c, d] and $w(y) \ge v(y)$ for $c \le y \le d$, then area is bounded by the lines parallel to: :

- ➤ Y-axis
- ➤ X-axis
- Both X-axis and Y-axis

Question No: 24 (Marks: 1) - Please choose one

$$2(1) + 2(2) + 2(3) + 2(4) + 2(5)$$

can be expressed in sigma

notation?

$$\sum_{k=0}^{5} 2k^2$$

How the series

>

$$\sum_{k=1}^{5} 2k^2$$

•

$$\sum_{k=0}^{5} 2k$$

Question No: 25 (Marks: 1) - Please choose one

$$\sum_{k=1}^{n} \frac{k^3}{2} =$$

$$\frac{n(n+1)}{4}$$

 $\frac{[n(n+1)]^2}{8}$

$$\frac{n(n+1)(2n+1)}{12}$$

•

Question No: 26 (Marks: 1) - Please choose one

 $a_1 < a_2 < a_3 < < a_n <$, then a sequence $\{a_n\}$ is.......

- Nondecreasing
- Decreasing

Increasin

▶ Nonincreasing

Question No: 27 (Marks: 1) - Please choose one

 $a_1 \geq a_2 \geq a_3 \geq \dots \geq a_n \geq \dots$, then a sequence $\{a_n\}$ is

- ▶ Increasing
- ► Nondecreasing
- ▶ Decreasing
- Nonincreasing

Question No: 28 (Marks: 1) - Please choose one

If the difference between successive terms $a_{n+1} - a_n > 0$ then the sequence $\{a_n\}$

is known as: ▶ Increasing

- ▶ Decreasing
- ▶ Nondecreasing
- ▶ Nonincreasing

Ouestion No: 29 (Marks: 1) - Please choose one

$$\frac{a_{n+1}}{a}$$
 >

For a sequence $\{a_n\}$ if the ratio of successive terms then the sequence is known as:

- ▶ Increasing
- ▶ Decreasing
- ▶ Nondecreasing
- ▶ Nonincreasing

Question No: 30 (Marks: 1) - Please choose one

$$\frac{a_{n+1}}{a} \ge 1$$

For a sequence this known as:

then the sequence

▶ Increasing

- ▶ Decreasing
- Nondecreasing

▶ Nonincreasing

Question No: 31 (Marks: 1) - Please choose one

 $f(n)=a_n$ is the nth term of the sequence and f'(n)>0 then the sequence will be:

- Increasing
- ▶ Decreasing
- ▶ Nondecreasing
- ▶ Nonincreasing

Question No: 32 (Marks: 1) - Please choose one

If the geometric series $|a+ar+ar^2+ar^3+\ldots+ar^{k-1}+\ldots \ \ where \ (a\neq 0)$ |r|<1

then which of the following is true for the given series?

- Converges
- ▶ Diverges
- ▶ Gives no information

Question No: 33 (Marks: 1) - Please choose one

$$a + ar + ar^2 + ar^3 + ... + ar^{k-1} + ...$$
 where $(a \neq 0)$ $|r| \ge 1$

If the geometric series then which of the following is true for the given series?

- ▶ Converges
- Diverges
- ▶ Gives no information

Question No: 34 (Marks: 1) - Please choose one

$$\sum_{k=1} u_k$$

$$\sum_{k=1}^{\infty} |u_k|$$

If the series

converges but the series

does not converge, then

$$\sum_{k=1}^{\infty} u_k$$

will _____

- Converge absolutely
- ▶ Diverge
- ► Converge conditionally

Question No: 35 (Marks: 1) - Please choose one

Let be a series with nonzero terms and suppose that
$$\rho = \lim_{k \to \infty} \frac{|u_{k+1}|}{|u_k|} > 1$$

then which of the following is true?

- ► The series ____ diverges
- ▶ No conclusion can be drawn.

Question No: 36 (Marks: 1) - Please choose one

Suppose f and g are integrable functions on [a, b] and c is a constant, then

$$\int_{a}^{b} c \left[f(x) + g(x) \right] dx = \underline{\hspace{1cm}}$$

$$\int_{a}^{b} f(cx)dx + \int_{a}^{b} g(cx)dx$$

$$\int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

Question No: 37 (Marks: 1) - Please choose one

Which of the following is surface area S generated by revolving the curve y = f(x) between

x = 0 and x = 2 about the x-axis?

$$S = \int_{0}^{2} 2\pi f(x) \sqrt{1 + [f(x)]} dx$$

$$S = \int_{0}^{2} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx$$

$$S = \int_{0}^{2} 2\pi f(x) \sqrt{1 + [f'(x)]} dx$$

$$S = \int_{0}^{2} 2\sqrt{1 + [f'(x)]} dx$$

Question No: 38 (Marks: 1) - Please choose one

Which of the following is area of the surface generated by revolving the curve $y = 4\sqrt{x}$: $1 \le x \le 4$

about the *x*-axis?

$$\int_{1}^{4} 2\pi (4\sqrt{x}) \sqrt{1 + \left[(4\sqrt{x}) \right]^{2}} dx$$

$$\int_{1}^{4} 2\pi \left(4\sqrt{x}\right) \sqrt{1 + \left[\left(4\sqrt{x}\right)'\right]} dx$$

$$\int_{1}^{4} 2\pi + \sqrt{1 + \left[\left(4\sqrt{x} \right)' \right]^{2}} dx$$

Question No: 39 (Marks: 1) - Please choose one

Which of the following is the work done W if an object moves in the positive direction along a coordinate line while subject to a force F(x) in the direction of motion over an interval [0,3]?

$$W = \int_{2}^{3} 3x dx$$

▶

$$W = \int_{0}^{3} 3x dx$$

$$W = \int_{0}^{3} F(x) dx$$

$$W = \int_{3}^{6} F(x) dx$$

▶

Question No: 40 (Marks: 1) - Please choose one

$$\int_{1}^{0} f(x) \ dx = 2 \qquad \int_{0}^{5} f(x) \ dx = 1$$

If and then which of the following is value of $\int_{1}^{5} f(x) dx$

► -3 ► -1

Question No: 41 (Marks: 2)

$$\frac{1}{2\sqrt{x}}$$

Derivative of a function is

. Find the original function.

Question No: 42 (Marks: 2)

$$ho = \lim_{k o +\infty} \sqrt[k]{u_k}$$

If is a series with positive terms and ; then write the three cases for the series to be convergent, divergent or none.

Question No: 43 (Marks: 2)

Evaluate the following integral:

$$\int_{1}^{3} \frac{1}{x^2} dx$$

Question No: 44 (Marks: 3)

Use the first fundamental theorem of calculus to evaluate the definite integral:

$$\int_{0}^{2} f(x) dx \quad \text{where} \quad f(x) = \begin{cases} x^{2} & ; \quad 0 \le x < 1 \\ x^{3} & ; \quad 1 \le x \le 2 \end{cases}$$

Question No: 45 (Marks: 3)

$$\sum_{k=2}^{\infty} (-1)^{k-1} \frac{2^{k-1}}{(k-1)!}$$

Show that the series

converges absolutely.

Question No: 46 (Marks: 3)

Express the following definite integral as limit of Riemann Sum. (Do not evaluate the integral)

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} Cos x \ dx$$

Question No: 47 (Marks: 5)

Express area of the shaded region as a definite integral.

Question No: 48 (Marks: 5)

How much work is required to wind the chain onto the pulley if a 100-ft length of steel chain weighting

15 lb/ ft. is dangling from a pulley?

Question No: 49 (Marks: 5)

Evaluate the following integral:

$$\int_{1}^{2} \frac{x^2 + \sqrt{x}}{x^2} dx$$

Question No: 50 (Marks: 10)

Use L'Hopital's Rule to evaluate

$$\lim_{x\to 0} (1+\sin x)^{\cot x}$$

FINALTERM EXAMINATION 2009 (Session - 2)

Calculus & Analytical Geometry-I

According to Power-Rule of differentiation, if $f(x) = x^n$ where n is a real number, then

$$\frac{d}{dx}[x^n] = \sum_{n=1}^{\infty} x^{n-1}$$

$$\sum_{n=1}^{\infty} x^{n+1}$$

$$\sum_{n=1}^{\infty} x^{n+1}$$

Question No: 2 (Marks: 1) - Please choose one

If a function g is differentiable at a point x and a function f is differentiable at a point g(x), then the _____ is differentiable at point x .

- Composition (f o g)Quotient (f/g)Product (f.g)
- **►** Sum (f + g)

Question No: 3 (Marks: 1) - Please choose one

$$y = f(g(h(x)))$$

1

$$u = g(h(x))$$

$$v = h(x) \qquad \frac{dy}{dx} = \underline{\hspace{1cm}}$$

Question No: 4 (Marks: 1) - Please choose one

If a function f is on a closed interval [a,b], then f has both maximum and minimum value on [a,b].

- ▶ Continuous
- ▶ Discontinuous
- ▶ None of these

Question No: 5 (Marks: 1) - Please choose one

$$\int_{a}^{x} \frac{t^{2}}{2} dt$$

The expression

, represents a function of :

$$\int cf(x)dx = \underline{\hspace{1cm}}$$

if c is a constant

Question No: 7 (Marks: 1) - Please choose one

In the following figure, the area enclosed is bounded below by:

$$y = x + 0$$

$$y = x^2$$

x = 0

Question No: 8 (Marks: 1) - Please choose one

 $y = x^2 \ and \ y = x + 6$ At what points the two curves:

intersect?

$$x = 0$$
 and $x = 2$

$$x = 0 \text{ and } x = 3$$

$$x = 2 \text{ and } x = 3$$

$$x = -2 \text{ and } x = 3$$

Question No: 9 (Marks: 1) - Please choose one

What is the sum of following series?

$$\frac{n+1}{2}$$

$$\frac{(n+1)(n+2)}{2}$$

$$\underline{n(n+2)}$$

n(n+1)

Question No: 10 (Marks: 1) - Please choose one

If
$$b > 0$$
 then $\frac{d}{dx}[b^x] = \underline{\hspace{1cm}}$

- $\ln b$

Question No: 11 (Marks: 1) - Please choose one

Let S be a solid bounded by two parallel planes perpendicular to the x-axis at x = a and x = b. If , for each x in [a,b], the cross-section area of S perpendicular to the x-axis is A(x), then what is the volume of the solid?

$$V = \int_{a}^{b} A(y) dx$$

$$V = \int_{a}^{A(x)} [b - a] dx$$

$$V = \int_{0}^{A(x)} [b+a]dx$$

▶

Question No: 12 (Marks: 1) - Please choose one

Let the solid generated by the region enclosed between

$$y = \sqrt{x} \quad ; \quad x = 1, x = 4$$

and the x-axis is revolved about the y-axis. Which of the following equation gives the volumes of a solid by cylindrical shells?

$$V = \int_{1}^{4} 2x \sqrt{x} dx$$

$$V = \int_{0}^{4} 2x \sqrt{x} dx$$

ightharpoons

$$V = \int_{4}^{4} 2x \sqrt{x} dx$$

▶

Question No: 13 (Marks: 1) - Please choose one

If slope m of a none vertical line is m =1 then the angle of inclination of the line is

 $\triangleright \frac{\frac{\pi}{2}}{\frac{\pi}{2}}$

 \blacktriangleright

Question No: 14 (Marks: 1) - Please choose one

The PYTHAGORAS theorem describes the relationship between the sides of

- Right angle triangle
- ► Isoceleous triangle
- ► Equilateral triangle

Question No: 15 (Marks: 1) - Please choose one

If a quantity y depends on another quantity x in such a way that each value of x determines exactly one value of y , we say that $\ y$ is of x

- ▶ relation
- ▶ function
- ▶ not a function
- ▶ not a relation

Question No: 16 (Marks: 1) - Please choose one

The graph of the equation $y = x^2 - 4x + 5$ will represent

- Parabola
- ➤ Straight line
- ► Two straight lines
- ► Ellipse

Question No: 17 (Marks: 1) - Please choose one

$$\lim_{x \to a} f(x) = \dots \text{where } f(x) = k$$

The

(k is a constant)

Question No: 18 (Marks: 1) - Please choose one

$$\int \frac{1}{x^2 + 2} \ dx$$

Consider the indefinite integral

Let
$$t = x^2 + 2$$

Is the following substitution correct?

$$\int \frac{1}{x^2 + 2} dx = \int \frac{1}{t} dt$$

► Yes

► No

Question No: 19 (Marks: 1) - Please choose one

$$\log_b \frac{1}{t} = \underline{\hspace{1cm}}$$

$$\log_b t$$

$$1 - \log_b t$$

$$1 + \log_b t$$

 $-\log_{b} t$

Question No: 20 (Marks: 1) - Please choose one

How the series 1-3+5-7+9-11 can be expressed in sigma notation?

$$\sum_{k=0}^{k=5} (-1)^k (2k+1)$$

$$\sum_{k=1}^{k=5} (-1)^k (2k+1)^k$$

>

$$\sum_{k=1}^{k=5} (2k+1)$$

•

$$\sum_{k=1}^{k=5} (2k+1)$$

 \blacktriangleright

Question No: 21 (Marks: 1) - Please choose one

$$\sum_{k=1}^{n} f(x_{k}^{*}) \Delta x_{k}$$

The sum

is known as:

- ► Riemann Sum
- ► General Sum
- ► Integral Sum
- ► Geometric Sum

Question No: 22 (Marks: 1) - Please choose one

$$\sum_{k=1}^{n} f(x_{k}^{*}) \Delta x_{k}$$

What does 'n' represent in the Riemann Sum

- ► No. of Circles
- ▶ No. of Subintervals
- ▶ No. of Loops
- ▶ No. of Squares

Question No: 23 (Marks: 1) - Please choose one

If w and v are continuous functions of y on an interval [c, d] and $w(y) \ge v(y)$ for $c \le y \le d$, then area is bounded by the lines parallel to: :

- ➤ Y-axis
- ➤ X-axis
- Both X-axis and Y-axis

Question No: 24 (Marks: 1) - Please choose one

$$2(1) + 2(2) + 2(3) + 2(4) + 2(5)$$

can be expressed in sigma

notation?

$$\sum_{k=0}^{5} 2k^2$$

How the series

>

$$\sum_{k=1}^{5} 2k^2$$

•

$$\sum_{k=0}^{5} 2k$$

Question No: 25 (Marks: 1) - Please choose one

$$\sum_{k=1}^{n} \frac{k^3}{2} =$$

$$\frac{n(n+1)}{4}$$

 $\frac{[n(n+1)]}{8}$

$$\frac{n(n+1)(2n+1)}{12}$$

_

Question No: 26 (Marks: 1) - Please choose one

 $\overline{a_1} < a_2 < a_3 < < a_n <$ If , then a sequence $\{a_n\}$ is........

- Nondecreasing
- Decreasing

Increasin

▶ Nonincreasing

Question No: 27 (Marks: 1) - Please choose one

 $a_1 \geq a_2 \geq a_3 \geq \dots \geq a_n \geq \dots$, then a sequence $\{a_n\}$ is

- ▶ Increasing
- ► Nondecreasing
- ▶ Decreasing
- Nonincreasing

Question No: 28 (Marks: 1) - Please choose one

If the difference between successive terms $a_{n+1} - a_n > 0$ then the sequence $\{a_n\}$

is known as: ▶ Increasing

- ▶ Decreasing
- ▶ Nondecreasing
- ▶ Nonincreasing

Ouestion No: 29 (Marks: 1) - Please choose one

$$\frac{a_{n+1}}{a}$$
 >

For a sequence $\{a_n\}$ if the ratio of successive terms then the sequence is known as:

- ▶ Increasing
- ▶ Decreasing
- ▶ Nondecreasing
- ▶ Nonincreasing

Question No: 30 (Marks: 1) - Please choose one

$$\frac{a_{n+1}}{a} \ge 1$$

For a sequence if the ratio of successive terms is known as:

then the sequence

▶ Increasing

- ▶ Decreasing
- Nondecreasing

▶ Nonincreasing

Question No: 31 (Marks: 1) - Please choose one

 $f(n)=a_n$ is the nth term of the sequence and f'(n)>0 then the sequence will be:

- Increasing
- ▶ Decreasing
- ▶ Nondecreasing
- ▶ Nonincreasing

Question No: 32 (Marks: 1) - Please choose one

If the geometric series $|a+ar+ar^2+ar^3+\ldots+ar^{k-1}+\ldots \ \ where \ (a\neq 0)$ |r|<1

then which of the following is true for the given series?

- Converges
- ▶ Diverges
- ▶ Gives no information

Question No: 33 (Marks: 1) - Please choose one

$$a + ar + ar^2 + ar^3 + ... + ar^{k-1} + ...$$
 where $(a \neq 0)$ $|r| \ge 1$

If the geometric series then which of the following is true for the given series?

- ▶ Converges
- Diverges
- ▶ Gives no information

Question No: 34 (Marks: 1) - Please choose one

$$\sum_{k=1} u_k$$

$$\sum_{k=1}^{\infty} |u_k|$$

If the series

converges but the series

does not converge, then

$$\sum_{k=1}^{\infty} u_k$$

will _____

- Converge absolutely
- ▶ Diverge
- ► Converge conditionally

Question No: 35 (Marks: 1) - Please choose one

Let be a series with nonzero terms and suppose that
$$\rho = \lim_{k \to \infty} \frac{|u_{k+1}|}{|u_k|} > 1$$

then which of the following is true?

- ► The series ____ diverges
- ▶ No conclusion can be drawn.

Question No: 36 (Marks: 1) - Please choose one

Suppose f and g are integrable functions on [a, b] and c is a constant, then

$$\int_{a}^{b} c \left[f(x) + g(x) \right] dx = \underline{\hspace{1cm}}$$

$$\int_{a}^{b} f(cx)dx + \int_{a}^{b} g(cx)dx$$

$$\int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

Question No: 37 (Marks: 1) - Please choose one

Which of the following is surface area S generated by revolving the curve y = f(x) between

x = 0 and x = 2 about the x-axis?

$$S = \int_{0}^{2} 2\pi f(x) \sqrt{1 + [f(x)]} dx$$

$$S = \int_{0}^{2} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx$$

$$S = \int_{0}^{2} 2\pi f(x) \sqrt{1 + [f'(x)]} dx$$

$$S = \int_{0}^{2} 2\sqrt{1 + [f'(x)]} dx$$

Question No: 38 (Marks: 1) - Please choose one

Which of the following is area of the surface generated by revolving the curve $y = 4\sqrt{x}$: $1 \le x \le 4$

about the *x*-axis?

$$\int_{1}^{4} 2\pi (4\sqrt{x}) \sqrt{1 + \left[(4\sqrt{x}) \right]^{2}} dx$$

$$\int_{1}^{4} 2\pi \left(4\sqrt{x}\right) \sqrt{1 + \left[\left(4\sqrt{x}\right)'\right]} dx$$

$$\int_{1}^{4} 2\pi + \sqrt{1 + \left[\left(4\sqrt{x} \right)' \right]^{2}} dx$$

Question No: 39 (Marks: 1) - Please choose one

Which of the following is the work done W if an object moves in the positive direction along a coordinate line while subject to a force F(x) in the direction of motion over an interval [0,3]?

$$W = \int_{2}^{3} 3x dx$$

▶

$$W = \int_{0}^{3} 3x dx$$

$$W = \int_{0}^{3} F(x) dx$$

$$W = \int_{3}^{0} F(x) dx$$

•

Question No: 40 (Marks: 1) - Please choose one

$$\int_{1}^{0} f(x) dx = 2 \qquad \int_{0}^{5} f(x) dx = 1$$

If and then which of the following is value of f(x) dx

- ► -3 ► -1
- ► -: ► 1

Question No: 41 (Marks: 2)

$$\frac{1}{2\sqrt{x}}$$

Derivative of a function is

. Find the original function.

Question No: 42 (Marks: 2)

$$\rho = \lim_{k \to +\infty} \sqrt[k]{u_k}$$

If is a series with positive terms and ; then write the three cases for the series to be convergent, divergent or none.

Question No: 43 (Marks: 2)

Evaluate the following integral:

$$\int_{1}^{3} \frac{1}{x^2} dx$$

Question No: 44 (Marks: 3)

Use the first fundamental theorem of calculus to evaluate the definite integral:

$$\int_{0}^{2} f(x) dx \quad \text{where} \quad f(x) = \begin{cases} x^{2} & ; \quad 0 \le x < 1 \\ x^{3} & ; \quad 1 \le x \le 2 \end{cases}$$

Question No: 45 (Marks: 3)

$$\sum_{k=2}^{\infty} (-1)^{k-1} \frac{2^{k-1}}{(k-1)!}$$

Show that the series

converges absolutely.

Question No: 46 (Marks: 3)

Express the following definite integral as limit of Riemann Sum. (Do not evaluate the integral)

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} Cos x \ dx$$

Question No: 47 (Marks: 5)

Express area of the shaded region as a definite integral.

Question No: 48 (Marks: 5)

How much work is required to wind the chain onto the pulley if a 100-ft length of steel chain weighting

15 lb/ ft. is dangling from a pulley?

Question No: 49 (Marks: 5)

Evaluate the following integral:

$$\int_{1}^{2} \frac{x^2 + \sqrt{x}}{x^2} dx$$

Question No: 50 (Marks: 10)

Use L'Hopital's Rule to evaluate

$$\lim_{x\to 0} (1+\sin x)^{\cot x}$$

FINALTERM EXAMINATION (Session - 4)

Calculus & Analytical Geometry-I

(Marks: 1) - Please choose one

x = 3, the x-axis, and the line

Let the region bounded by the curve is revolved about the y-axis to generate a solid. Which of the following equation gives the volume of a solid by cylindrical shells?

$$V = \int_{0}^{3} x^{\frac{3}{2}} dx$$

(Marks: 1) - Please choose one

For a sequence if the difference between successive terms then the sequence is known as:

- ▶ Increasing
- Decreasing
- ▶ Nondecreasing
- ▶ Nonincreasing

(Marks: 1) - Please choose one

$$\frac{a_{n+1}}{a}$$
 < 1

For a sequence if the ratio of successive terms is known as:

then the sequence

▶ Increasing

- ▶ Decreasing
- ▶ Nondecreasing
- ▶ Nonincreasing

(Marks: 1) - Please choose one

$$\rho = \lim_{k \to +\infty} \sqrt[k]{u_k}$$
where $\rho > 1$ then the series

/will be.....?

- ► Convergent
- ▶ Divergent
- ► Give no information

(Marks: 1) - Please choose one

In alternating series test, which one of the following condition must be satisfied?

$$a_1 > a_2 > a_3 \dots > a_k > \dots$$

$$a_1 \le a_2 \le a_3 \dots \dots \le a_k \le \dots$$

(Marks: 1) - Please choose one

$$y = \frac{2\sqrt{2}}{3}x^{\frac{3}{2}}$$
; $0 \le x \le 2$

Let then which of the following is the length of the curve?

$$L = \int_{0}^{2} \sqrt{\left[\frac{d}{dx} \left(\frac{2\sqrt{2}}{3} x^{\frac{3}{2}}\right)\right]^{2} dx}$$

$$L = \int \sqrt{1 + \left[\frac{d}{dx} \left(\frac{2\sqrt{2}}{3} x^{\frac{3}{2}} \right) \right]^2} dx$$

$$L = \int_{0}^{2} \sqrt{1 + \left[\frac{d}{dx} \left(\frac{2\sqrt{2}}{3} x^{\frac{3}{2}} \right) \right]^{2}} dx$$

$$L = \int_{0}^{2} \sqrt{1 + \left[\frac{d}{dx} \left(\frac{2\sqrt{2}}{3} x^{\frac{3}{2}} \right) \right] dx}$$

is known as

- ► An even number
- ► Irrational Number
- ► A natural Number
- ► Rational Number

(Marks: 1) - Please choose one

$$f'(x_n) = 0$$
 for some n

For a function f, let

Does the Newton's Method works for approximating the solution of f(x) = 0?

► No

(Marks: 1) - Please choose one

The Mean Value Theorem states that "Let function f be differentiable on (a,b) and continuous on [a, b], then there exist at least one point c in (a,b) where"

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

$$f(b) - f(a)$$

$$f(c) = \frac{f(b) - f(a)}{b - a}$$

$$f(c) = \frac{f(a) - f(b)}{b - a}$$

$$f'(c) = \frac{f(a) - f(b)}{b - a}$$

(Marks: 1) - Please choose one

$$dx^{[F(x)] = f(x)}$$

If there is some function *F* such that

then any function of

the form

- Derivative
- ▶ Antiderivative
- ➤ Slope
- ► Maximum value

(Marks: 1) - Please choose one

If f and g are continues function on an interval [a, b] and $f(x) \ge g(x)$ for $a \le x \le b$, then area is bounded by the lines parallel to:

- ➤ X -axis
- ➤ Y-axis
- ► Both X -axis and Y-axis

(Marks: 1) - Please choose one

Sigma notation is represented by which of the following Greek letter?

- $\triangleright \chi$

In the following figure, the area enclosed is bounded below by:

$$y = x + \epsilon$$

y = x

$$x=2$$

$$x = 0$$

(Marks: 1) - Please choose one

Consider a function h(x) and a constant c then

$$\frac{d}{dx}\big((c)\left\{h(x)\right\}\big) = \underline{\hspace{1cm}}$$

▶ 0

$$\frac{d}{dx}(h(x))$$

$$\frac{d}{d}(h(cx))$$

$$c \frac{d}{dx} (h(x))$$

(Marks: 1) - Please choose one

Let the solid generated by the region enclosed between

$$y = \sqrt{x}$$
 ; $x = 1, x = 4$

and the x-axis is revolved about the y-axis. Which of the following equation gives the volumes of a solid by cylindrical shells?

$$V = \int_{1}^{4} 2\pi x \sqrt{x} dx$$

$$V = \int_{1}^{4} 2x \sqrt{x} dx$$

$$V = \int_{0}^{4} 2x \sqrt{x} dx$$

$$V = \int_{-4}^{4} 2x \sqrt{x} dx$$

(Marks: 1) - Please choose one

Let f is a smooth curve on the interval [a, b]. What is the arc length L of the curve f(x) defined over the interval [a, b]?

$$L = \lim_{\max \Delta x \to 0} \sum_{k=1}^{n} \sqrt{1 + (f'(x^*_k))}$$

 $L = \sum_{k=1}^{n} \sqrt{1 + (f'(x^*_{k}))} \Delta x_{k}$

$$L = \lim_{\max \Delta x \to 0} \sum_{k=1}^{n} \sqrt{1 + (f'(x^*_{k}))^2} \Delta x_{k}$$

$$L = \sum_{k=1}^{n} \sqrt{1 + (f(x^*_k))} \Delta x$$

▶

Let $f^{(x)}$ is a function such that as x approaches a real number a, either from left or right-hand-side, the function values increases or decreases unboundedly then

 $\lim_{x \to a} f(x)$

- Exist
- ▶ Does not exist

(Marks: 1) - Please choose one

$$\frac{d(\sec x)}{dx} = \frac{(\sec x)(\tan x)}{(\sec x)(\tan x)}$$

$$(\cos x)(\tan x)$$

$$(\cos x)(\cot x)$$

$$(\cos x)(\cot x)$$

(Marks: 1) - Please choose one

At what points the two curves: $y = x^2$ and y = x + 6 intersect?

- x = 0 and x = 2
- x = 0 and x = 3
- x = 2 and x = 3
- x = -2 and x = 3

(Marks: 1) - Please choose one

$$\lim_{x \to -\infty} f(x) = +\infty \quad and \quad \lim_{x \to +\infty} f(x) = +\infty$$

If f is continuous function such that $(-\infty, +\infty)$

- ► maximum value but no minimum
- ▶ minimum value but no maximum
- ▶ both maximum and minimum value

For a graph to be symmetric about y-axis means, for each point (x,y) on the graph, the point ----- is also on the graph

- ► (x , -y)
- ► (-x , y)
- ► (-x , -y)

(Marks: 1) - Please choose one

The graph $x = y^2$ is symmetric about -----axis

- ➤ X-axis
- ➤ Y-axis
- ▶ Origin

(Marks: 1) - Please choose one

$$\frac{a_{n+1}}{a} \ge 1$$

For a sequence if the ratio of successive terms is known as:

then the sequence

- ▶ Increasing
- Decreasing
- Nondecreasing
- ▶ Nonincreasing

(Marks: 1) - Please choose one

$$a_n = \left\{\frac{1}{n}\right\}_{n=1}^{\infty}$$

Which of the following option is true for the sequence

- ▶ Increasing
- Decreasing
- ► Nonincreasing
- Nondecreasing

(Marks: 1) - Please choose one

If the partial sum of a series is finite then the series will/will be:

- ▶ Divergent
- Convergent
- ▶ Give no information

If the geometric series $a+ar+ar^2+ar^3+...+ar^{k-1}+... \ \ where \ (a\neq 0)$ |r|<1

then which of the following is true for the given series?

- Converges
- Diverges
- ▶ Gives no information

(Marks: 1) - Please choose one

$$\rho = \lim_{k \to +\infty} \frac{u_{k+1}}{u_k}$$
 If where $\rho > 1$ then the series
$$\sum_{k=0}^{\infty} u_k$$
 with positive terms will /will be.....?

- ▶ Convergent
- Divergent
- ▶ Give no information

(Marks: 1) - Please choose one

If a quantity y depends on another quantity x in such a way that each value of x determines exactly one value of y , we say that y is of x

- ▶ relation
- function
- ▶ not a function
- ▶ not a relation

(Marks: 1) - Please choose one

$$\frac{(x^2-4)}{(x-2)}$$

Domain of the function y = i

$$(-\infty, 2)U(2, +\infty)$$

$$(-\infty, 2)$$

(Marks: 1) - Please choose one

Tan(x) is continuous every where except at points

(Marks: 1) - Please choose one

(Marks: 1) - Please choose one

How the series 1-3+5-7+9-11 can be expressed in sigma notation?

$$\sum_{k=0}^{k=5} (-1)^k (2k+1)$$

$$\sum_{k=1}^{k=5} (-1)^k (2k+1)$$

$$\sum_{k=5}^{k=5} (2k+1)$$

$$\sum_{k=1}^{k=5} (2k+1)$$

What is the sum of following series?

$$1^3 + 2^3 + 3^3 + 4^3 + _ _ + n^3$$

$$\frac{n(2n)(2n+1)}{6}$$

$$\frac{(n+1)(n+2)}{2}$$

$$\left\lceil \frac{n(n+2)}{2} \right\rceil^2$$

(Marks: 1) - Please choose one

$$\frac{5}{7} \times 1^2 + \frac{5}{7} \times 2^2 + \frac{5}{7} \times 3^2 + \frac{5}{7} \times 4^2 \dots + \frac{5}{7} \times n^2 = \underline{\hspace{1cm}}$$

(Marks: 1) - Please choose one

$$\int_{a}^{a} f(x)dx = \underline{\hspace{1cm}}$$

If point a is in the domain of function f, then

(Marks: 1) - Please choose one

 $a_1>a_2>a_3>.....>a_n>....$, then a sequence

- ► Increasing
- ► Nondecreasing
- Decreasing
- ▶ Nonincreasing

(Marks: 1) - Please choose one

$$\sum_{k=1}^{\infty} (-1)^n a_k$$

A series of the form

is called

- Alternating series
- ▶ Geometric series
- ▶ Arithmetic series
- ▶ Harmonic series

(Marks: 1) - Please choose one

Which of the following is the Maclaurin series for e^x ?

$$1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...+\frac{x^k}{k!}+...$$

$$x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^k}{k!} + \dots$$

$$1+x+\frac{x^3}{3!}+...+\frac{x^k}{k!}+...$$

$$1-x+\frac{x^3}{21}-...-\frac{x^k}{41}-..$$

▶

(Marks: 1) - Please choose one

Which of the following is the work done W if an object moves in the positive direction along a coordinate line while subject to a force F(x) in the direction of motion over an interval [0,3]?

$$W = \int_{2}^{3} 3x dx$$

$$W = \int_{0}^{3} 3x dx$$

$$W = \int_{2}^{0} F(x) dx$$

► ′ M-

(Marks: 1) - Please choose one

Which of the following is the spring constant k if a spring whose natural length is 2m exerts a force of 3N when stretched 1m beyond its natural length?

► 3 N/m

(Marks: 2)

Find the limits of the integral indicating the area bounded by the

$$y = x^2$$
 and $y = x + 6$ curves

(Marks: 2)

What will be the amount of work done if an object moves 7*m* in the direction of a force of 70*N*?

(Marks: 2)

Evaluate the following integral by substitution method.

$$\int x (2x^2 + 1)^{\frac{2}{3}} dx$$

(Marks: 3)

Evaluate the following integral:

$$\int \frac{5 - 6\sin^2 x}{\sin^2 x} \ dx$$

(Marks: 3)

Find the spring constant K; if a force of 10N is required to stretch a spring from its natural length of 4.8m to a length of 6.8m?

(Marks: 3)

Find a definite integral indicating the area of the surface generated by revolving

the curve
$$y = \sqrt[3]{3x}$$
 ; $0 \le y \le 4$ about the $x-$ axis. But do not evaluate the integral.

(Marks: 5)

$$\frac{d}{dx}[f(x)] = 12x^2 - 6x + 1$$

Let $\qquad \qquad . \ \ \, \text{Find} \, \, f(\textbf{x})$

(Marks: 5)

Determine whether the sequence $\{a_n\}$ converges or diverges; if it converges then find its limit;

$$a_n = \frac{3n^4 + 1}{4n^2 - 1}$$

where

(Marks: 5)

Use the cylindrical shell to find the volume of the solid generated when the region enclosed by the curve $y=x^3$, x=1, y=0 is revolved about the y-axis.

(Marks: 10)

Find the area of the region that is enclosed by the curves $y=x^2$ and $y=\sqrt{x}$

$$x = \frac{1}{4} \text{ and } x = 1$$

between

FINALTERM EXAMINATION (Session - 4)

Calculus & Analytical Geometry-I

(Marks: 1) - Please choose one

$$y = \sqrt[3]{x} \qquad x = 3$$

Let the region bounded by the curve , the x-axis, and the line is revolved about the y-axis to generate a solid. Which of the following equation gives the volume of a solid by cylindrical shells?

$$V = \int\limits_0^3 x^{\frac{3}{2}} dx$$

$$V = 2\pi \int_{0}^{3} \sqrt{x} \, dx$$

(Marks: 1) - Please choose one

For a sequence $a_{n+1}-a_n \leq 0$ then the sequence is known as:

- ▶ Increasing
- Decreasing
- ▶ Nondecreasing
- ▶ Nonincreasing

$$\frac{a_{n+1}}{a}$$
 < 1

For a sequence if the ratio of successive terms is known as:

then the sequence

- ▶ Increasing
- ▶ Decreasing
- ▶ Nondecreasing
- ▶ Nonincreasing

(Marks: 1) - Please choose one

$$\rho = \lim_{k \to +\infty} \sqrt[k]{u_k}$$

/will be.....?

- ► Convergent
- Divergent
- ▶ Give no information

(Marks: 1) - Please choose one

In alternating series test, which one of the following condition must be satisfied?

$$\lim_{k \to \infty} a_k = 1$$

$$a_1 > a_2 > a_3 \dots > a_k > \dots$$

$$a_1 \le a_2 \le a_3 \dots \dots \le a_k \le \dots$$

(Marks: 1) - Please choose one

$$y = \frac{2\sqrt{2}}{3}x^{\frac{3}{2}}$$
; $0 \le x \le 2$

Let

then which of the following is the length of the curve?

$$L = \int_0^2 \sqrt{\left[\frac{d}{dx} \left(\frac{2\sqrt{2}}{3}x^{\frac{3}{2}}\right)\right]^2 dx}$$

$$L = \int \sqrt{1 + \left[\frac{d}{dx} \left(\frac{2\sqrt{2}}{3} x^{\frac{3}{2}}\right)\right]^2} dx$$

$$L = \int_{0}^{2} \sqrt{1 + \left[\frac{d}{dx} \left(\frac{2\sqrt{2}}{3} x^{\frac{3}{2}} \right) \right] dx}$$

(Marks: 1) - Please choose one

is known as

- ► An even number
- ▶ Irrational Number
- ► A natural Number
- Rational Number

(Marks: 1) - Please choose one

$$f'(x_n) = 0$$
 for some n

For a function f, let

Does the Newton's Method works for approximating the solution of f(x) = 0?

(Marks: 1) - Please choose one

The Mean Value Theorem states that "Let function f be differentiable on (a,b) and continuous on [a, b], then there exist at least one point c in (a,b) where"

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

$$f(c) = \frac{f(b) - f(a)}{a}$$

$$f(c) = \frac{f(b) - f(a)}{b - a}$$

▶

$$f(c) = \frac{f(a) - f(b)}{b - a}$$

 $f'(c) = \frac{f(a) - f(b)}{b - a}$

▶

(Marks: 1) - Please choose one

$$dx^{[F(x)] = f(x)}$$

If there is some function F such that

then any function of

the form F(x) + C is ----- of f(x)

- Derivative
- ▶ Antiderivative
- ➤ Slope
- ► Maximum value

(Marks: 1) - Please choose one

If f and g are continues function on an interval [a, b] and $f(x) \ge g(x)$ for $a \le x \le b$, then area is bounded by the lines parallel to:

- ➤ X -axis
- Y-axis
- ► Both X -axis and Y-axis

(Marks: 1) - Please choose one

Sigma notation is represented by which of the following Greek letter?

- $\triangleright \chi$
- $ightharpoonup \eta$

(Marks: 1) - Please choose one

In the following figure, the area enclosed is bounded below by:

$$y = x + 6$$

$$y = x^2$$

$$x = 1$$

$$x = 0$$

(Marks: 1) - Please choose one

Consider a function h(x) and a constant c then

$$\frac{d}{dx}\big((c)\left\{h(x)\right\}\big) = \underline{\hspace{1cm}}$$

$$\frac{d}{dx}(h(x))$$

$$\frac{d}{d}(h(cx))$$

$$c \frac{d}{dx} (h(x))$$

(Marks: 1) - Please choose one

Let the solid generated by the region enclosed between

$$y = \sqrt{x} \quad ; \quad x = 1, x = 4$$

and the x-axis is revolved about the y-axis. Which of the following equation gives the volumes of a solid by cylindrical shells?

$$V = \int_{1}^{4} 2\pi x \sqrt{x} dx$$

$$V = \int_{1}^{4} 2x \sqrt{x} dx$$

$$V = \int_{0}^{4} 2x \sqrt{x} dx$$

$$V = \int_{-4}^{4} 2x \sqrt{x} dx$$

▶

(Marks: 1) - Please choose one

Let f is a smooth curve on the interval [a, b]. What is the arc length L of the curve f(x) defined over the interval [a, b]?

$$L = \lim_{\max \Delta x \to 0} \sum_{k=1}^{n} \sqrt{1 + (f'(x^*_k))}$$

$$L = \sum_{k=1}^{n} \sqrt{1 + (f'(x^*_{k}))} \Delta x_{k}$$

$$L = \lim_{\max \Delta x \to 0} \sum_{k=1}^{n} \sqrt{1 + (f'(x^*_{k}))^2} \Delta x_{k}$$

$$L = \sum_{k=1}^{n} \sqrt{1 + (f(x^*_k))} \Delta x$$

▶

(Marks: 1) - Please choose one

Let $f^{(x)}$ is a function such that as x approaches a real number a, either from left or right-hand-side, the function values increases or decreases unboundedly then

 $\lim_{x \to a} f(x)$

- ► Exist
- ▶ Does not exist

(Marks: 1) - Please choose one

$$\frac{d(\sec x)}{dx} = \frac{(\sec x)(\tan x)}{(\sec x)(\tan x)}$$

$$(\cos x)(\tan x)$$

$$(\cos x)(\cos x)$$

$$(\cos x)(\cos x)$$

(Marks: 1) - Please choose one

 $y = x^2 \text{ and } y = x + 6$ At what points the two curves:

- x = 0 and x = 2
- x = 0 and x = 3
- x = 2 and x = 3
- x = -2 and x = 3

(Marks: 1) - Please choose one

$$\lim_{x \to -\infty} f(x) = +\infty \quad and \quad \lim_{x \to +\infty} f(x) = +\infty$$

If f is continuous function such that

then has _____ or

- ► maximum value but no minimum
- ▶ minimum value but no maximum
- both maximum and minimum value

For a graph to be symmetric about y-axis means, for each point (x,y) on the graph, the point ---- is also on the graph

- ► (x , -y)
- ► (-x , y)
- ► (-x , -y)

(Marks: 1) - Please choose one

The graph $x = y^2$ is symmetric about -----axis

- X-axis
- ➤ Y-axis
- ▶ Origin

(Marks: 1) - Please choose one

$$\frac{a_{n+1}}{a} \ge 1$$

For a sequence $\{a_n\}$ if the ratio of successive terms is known as :

then the sequence

- ▶ Increasing
- Decreasing
- Nondecreasing
- ▶ Nonincreasing

(Marks: 1) - Please choose one

$$a_n = \left\{\frac{1}{n}\right\}_{n=1}^{\infty}$$

Which of the following option is true for the sequence

- ► Increasing
- Decreasing
- ▶ Nonincreasing
- ▶ Nondecreasing

(Marks: 1) - Please choose one

If the partial sum of a series is finite then the series will/will be:

- ▶ Divergent
- Convergent
- ▶ Give no information

(Marks: 1) - Please choose one

$$a + ar + ar^2 + ar^3 + ... + ar^{k-1} + ... \quad where \ (a \neq 0)$$
 If the geometric series

If the geometric series |r| < 1

then which of the following is true for the given series?

- Converges
- ▶ Diverges
- ► Gives no information

(Marks: 1) - Please choose one

$$\rho = \lim_{k \to +\infty} \frac{u_{k+1}}{u_k}$$

If where $\rho > 1$ then the series $\sum_{k=1}^{\infty} u_k$ with positive terms w /will be......?

- ► Convergent
- Divergent
- ▶ Give no information

(Marks: 1) - Please choose one

If a quantity y depends on another quantity x in such a way that each value of x determines exactly one value of y , we say that y is of x

- ▶ relation
- function
- ▶ not a function
- ▶ not a relation

(Marks: 1) - Please choose one

$$\frac{(x^2-4)}{(x-2)}$$

Domain of the function y = i

(-∞, 2

Tan(x) is continuous every where except at points

$$\pm \frac{k\pi}{2}(k=1,3,5,...)$$

$$\pm \frac{k\pi}{2}(k=2,4,6,...)$$

$$\pm \frac{k\pi}{2}(k=1,2,3,4,5,6,...)$$

(Marks: 1) - Please choose one

$$\frac{\sin x}{x} = ----$$

$$= ----$$

$$\triangleright -1$$

$$\triangleright 2$$

$$\triangleright 0$$

(Marks: 1) - Please choose one

How the series 1-3+5-7+9-11 can be expressed in sigma notation?

$$\sum_{k=0}^{k-5} (-1)^k (2k+1)$$

$$\sum_{k=1}^{k-5} (-1)^k (2k+1)$$

$$\sum_{k=1}^{k=5} (2k+1)$$

 $\sum_{k=5}^{k=5} (2k+1)$

▶

(Marks: 1) - Please choose one

What is the sum of following series?

$$1^{3} + 2^{3} + 3^{3} + 4^{3} + \underline{\qquad} + n^{3}$$

$$\frac{n(2n)(2n+1)}{6}$$

 $\frac{(n+1)(n+2)}{2}$

 $\left[\frac{n(n+2)}{2}\right]$

(Marks: 1) - Please choose one

$$\frac{5}{7} \times 1^2 + \frac{5}{7} \times 2^2 + \frac{5}{7} \times 3^2 + \frac{5}{7} \times 4^2 \dots + \frac{5}{7} \times n^2 = \underline{\hspace{1cm}}$$

$$\frac{5n^{2}(n+1)^{2}}{14}$$

$$\frac{5(n+1)(2n+1)}{42}$$

$$\int_{a}^{a} f(x)dx = \underline{\hspace{1cm}}$$

If point a is in the domain of function f , then

- \rightarrow f'(x)
- f(x)
- **▶** 0
- ▶ 1

(Marks: 1) - Please choose one

- ► Increasing
- ▶ Nondecreasing
- Decreasing
- ▶ Nonincreasing

(Marks: 1) - Please choose one

$$\sum_{k=1}^{\infty} (-1)^n a_k$$

A series of the form

is called _____

- ► Alternating series
- ▶ Geometric series
- ► Arithmetic series
- ► Harmonic series

(Marks: 1) - Please choose one

Which of the following is the Maclaurin series for e^x ?

$$1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...+\frac{x^k}{k!}+...$$

$$x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^k}{k!} + \dots$$

 $1+x+\frac{x^3}{3!}+...+\frac{x^k}{k!}+...$

 $1-x+\frac{x^3}{3!}-...-\frac{x^k}{k!}-...$

(Marks: 1) - Please choose one

Which of the following is the work done W if an object moves in the positive direction along a coordinate line while subject to a force F(x) in the direction of motion over an interval [0,3]?

$$W = \int_{2}^{3} 3x dx$$

 $W = \int_{0}^{3} 3x dx$

$$W = \int_{0}^{0} F(x) dx$$

(Marks: 1) - Please choose one

Which of the following is the spring constant k if a spring whose natural length is 2m exerts a force of 3N when stretched 1m beyond its natural length?

- **▶** 3 *x*
- ▶ 3 *N/m*
- ▶ 2 *m*

► 3 *m/N*

(Marks: 2)

Find the limits of the integral indicating the area bounded by the curves $y = x^2$ and y = x + 6.

(Marks: 2)

What will be the amount of work done if an object moves 7m in the direction of a force of 70N?

(Marks: 2)

Evaluate the following integral by substitution method.

$$\int x (2x^2 + 1)^{\frac{2}{3}} dx$$

(Marks: 3)

Evaluate the following integral:

$$\int \frac{5 - 6\sin^2 x}{\sin^2 x} \ dx$$

(Marks: 3)

Find the spring constant K; if a force of 10N is required to stretch a spring from its natural length of 4.8m to a length of 6.8m?

(Marks: 3)

Find a definite integral indicating the area of the surface generated by revolving the curve $y = \sqrt[3]{3x}$; $0 \le y \le 4$ about the x- axis. But do not evaluate the integral.

(Marks: 5)

$$\frac{d}{dx}\big[f(x)\big]\!=\!12x^2\!-\!6x\!+\!1$$
 Let . Find $f(x)$

(Marks: 5)

Determine whether the sequence ${a_n}$ converges or diverges; if it converges then find its limit:

$$a_n = \frac{3n^4 + 1}{4n^2 - 1}$$

where

(Marks: 5)

Use the cylindrical shell to find the volume of the solid generated when the region enclosed by the curve $y=x^3$, x=1, y=0 is revolved about the y-axis.

(Marks: 10)

Find the area of the region that is enclosed by the curves $y=x^2$ and $y=\sqrt{x}$

 $x = \frac{1}{4} \text{ and } x = 1$

between .

FINALTERM EXAMINATION 2009 (Session - 1)

Calculus & Analytical Geometry-I

Question No: 4 (Marks: 1) - Please choose one

$$\lim_{x\to 0^+} \frac{\ln x}{1/x} = ----$$

► None of these

Question No: 5 (Marks: 1) - Please choose one

$$\frac{d(\tan x)}{dx} =$$

 $ightharpoonup co \sec x$

 $ightharpoonup co \sec^2 x$

Question No: 6 (Marks: 1) - Please choose one

$$=4$$
 then $\frac{dy}{dx}$

If xy - 4 then

▶ 0

 $\frac{-1}{x^2}$

4

 $\frac{-4}{r^2}$

Question No: 7 (Marks: 1) - Please choose one

Consider a function h(x) and a constant c then

$$\frac{d}{dx}\big((c)\left\{h(x)\right\}\big) = \underline{\hspace{1cm}}$$

$$\frac{d}{dx}(h(x))$$

$$\frac{d}{dx}(h(cx))$$

$$c \frac{d}{dx} (h(x))$$

Question No: 8 (Marks: 1) - Please choose one

Suppose that f and g are differentiable functions of g then

$$\frac{d}{dx}[f][g] =$$

$$\frac{[f'][g]-[f][g']}{g^2}$$

$$[f'][g] + [f][g]$$

$$[f'][g] - [f][g']$$

Ouestion No: 9 (Marks: 1) - Please choose one

$$\frac{d}{dx}[x^n] = nx^{n-1}$$

The power rule,

holds if n is

- ► An integer
- ► A rational number
- ► An irrational number
- ► All of the above

Question No: 10 (Marks: 1) - Please choose one

Let a function f be defined on an interval, and let x_1 and x_2 denotes two distinct points in that interval. If $f(x_1) = f(x_2)$ for all points x_1 and x_2 then

which of the following statement is correct?

- ightharpoonup f is a decreasing function
- ightharpoonup f is an increasing function
- ▶ f is a constant function

Question No: 11 (Marks: 1) - Please choose one

If f''(x) < 0 on an open interval (a,b) then which of the following statement is correct?

- ightharpoonup f is concave up on (a, b).
- ightharpoonup f is concave down on (a, b)
- ightharpoonup f is linear on (a, b).

Ouestion No: 12 (Marks: 1) - Please choose one

$$\sum_{k=1}^{n} f(x_{k}^{*}) \Delta x_{k}$$

What does 'n' represent in Riemann Sum

- ► No. of Circles
- ▶ No. of Rectangles
- ► No. of Loops
- ► No. of Squares

Question No: 13 (Marks: 1) - Please choose one

$$\lim_{x \to -\infty} f(x) = +\infty \quad and \quad \lim_{x \to +\infty} f(x) = +\infty$$

If f is continuous function such that then has

- ▶ maximum value but no minimum
- ▶ minimum value but no maximum
- both maximum and minimum value

Question No: 14 (Marks: 1) - Please choose one

$$\int_{2}^{t} \frac{x^{2}}{2} dx$$

The expression , represents a function of :

- ightharpoonup Both t and x

Question No: 15 (Marks: 1) - Please choose one

$$\int cf(x)dx = \underline{\hspace{1cm}}$$

if c is a constant

Question No: 16 (Marks: 1) - Please choose one

Sigma notation is represented by which of the following Greek letter?

- $\triangleright \chi$

Question No: 17 (Marks: 1) - Please choose one

In the following figure, the area enclosed is bounded below by:

$$y = x +$$

$$y = x^{2}$$

$$x = 2$$

$$x = 0$$

Question No: 18 (Marks: 1) - Please choose one

In the following figure, the area bounded on the sides by the lines are:

- x = 0
- x = 0 and x =
- x = 6

Question No: 19 (Marks: 1) - Please choose one

What is the area of the region in the following figure?

$$A = \int_{0}^{2} \left[(x+6) - (x^{2}) \right] dx$$

$$A = \int_{x}^{2} \left[(x+6) - (x^{2}) \right] dx$$

$$A = \int_{0}^{2} \left[(x+6) + (x^{2}) \right] dx$$

$$A = \int_{0}^{x} \left[\left(x + 6 \right) - \left(x^{2} \right) \right] dx$$

Question No: 20 (Marks: 1) - Please choose one

$$y = f(x) = 3x + 1$$

Which of the following is approximate area under the curve over the interval [2, 4], evaluated by using the formula

$$Area = f(x_1^*) \Delta x + f(x_2^*) \Delta x$$

If the interval [2, 4] is divided into two sub-intervals of

length and x_1^* and x_2^* are left endpoint of each sub-

▶ 23

Question No: 21 (Marks: 1) - Please choose one

$$y = f(x) = 2x + 3$$

Which of the following is approximate area under the curve over the interval [0,2], evaluated by using the formula

$$Area = f(x_1^*) \Delta x + f(x_2^*) \Delta x$$

If the interval $\begin{bmatrix} 0,\,2 \end{bmatrix}$ is divided into two sub-intervals of equal length and X_1^* and X_2^* are right endpoint of each sub-interval.

▶ 12

Question No: 22 (Marks: 1) - Please choose one

If
$$x > 0$$
 then $\frac{d}{dx}[\ln x] = \underline{\hspace{1cm}}$

Question No: 23 (Marks: 1) - Please choose one

Suppose f and g are integrable functions on [a,b] and c is a constant, then $\int c \left[f(x) + g(x) \right] dx = \underline{\hspace{1cm}}$

$$\int_{a}^{b} f(cx)dx + \int_{a}^{b} g(cx)dx$$

Question No: 24 (Marks: 1) - Please choose one

If the function f is continuous on [a,b] and if $f(x) \ge 0$ for all f(x) in [a,b], then which of the following gives area under the curve y = f(x) over the interval [a,b]?

$$\lim_{x\to\infty}\sum_{k=1}^n [x_k][f(x_k)] \qquad \text{where n is number of subdivisions of } [a,b]$$

 $\pi[radius]^2$

► (Width) (Height)

Question No: 25 (Marks: 1) - Please choose one

y = 3x and $y = 2x^2$

Let region R in the first quadrant enclosed between revolved about the

x-axis . Which of the following equation gives the volume of a solid by cylindrical

shells?

$$V = \int_{0}^{\frac{3}{2}} x(3x - 2x^2) dx$$

$$V = \int_{0}^{\frac{3}{2}} 2\pi (3x - 2x^2) dx$$

$$V = \int_{-1}^{\frac{3}{2}} 2\pi (3x - 2x^2) dx$$

Question No: 26 (Marks: 1) - Please choose one

Let f is a smooth function on [a, b]. What will be the arc length L of the curve y = f(x) from x = a to x = b?

$$L = \int_{b}^{a} \sqrt{1 + [f'(x)]} dy$$

$$L = \int_{0}^{a} \sqrt{1 + [f'(x)]} dy$$

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]} dx$$

Question No: 27 (Marks: 1) - Please choose one

If f is continuous on (a, b] but does not have a limit from the right then the

$$\int_{a}^{b} f(x)dx = \lim_{l \to a} \int_{l}^{b} f(x)dx$$

integral defined by

is called:

- ▶ Improper
- ► Proper
- ▶ Line

Question No: 28 (Marks: 1) - Please choose one

 $\frac{a_{n+1}}{2} > 1$ a_n

For a sequence if the ratio of successive terms is known as:

then the sequence

- Increasing
- ▶ Decreasing
- ► Nondecreasing
- ▶ Nonincreasing

Question No: 29 (Marks: 1) - Please choose one

$$\frac{a_{n+1}}{a_n} < 1$$

if the ratio of successive terms For a sequence is known as:

then the sequence

- ▶ Increasing
- Decreasing
- ▶ Nondecreasing
- ▶ Nonincreasing

Question No: 30 (Marks: 1) - Please choose one

$$\int \frac{3x^2 + 4x + 1}{x^3 + 2x^2 + x - 3} \, dx$$

Consider the indefinite integral

Let
$$t = x^3 + 2x^2 + x - 3$$

Is the following substitution correct?

$$\int \frac{3x^2 + 4x + 1}{x^3 + 2x^2 + x - 3} \, dx = \int \frac{1}{t} \, dt$$

➤ Yes

Question No: 31 (Marks: 1) - Please choose one

$$\rho = \lim_{k \to \infty} \frac{u_{k+1}}{u_k}$$

The series $\sum u_k$ be a series with positive terms and suppose that if $\rho = 1$, then which of the following is true?

- ▶ Converges
- ▶ Diverges
- ► May converges or diverges
- ▶ Gives no information

Question No: 32 (Marks: 1) - Please choose one

$$\sum u_k$$

The series $\sum u_k$ be a series with positive terms and suppose that

$$\rho = \lim_{k \to \infty} \sqrt[k]{u_k} = \lim_{k \to \infty} (u_k)^{\frac{1}{k}}$$
 if $\rho = 1$, then which of the following is true?

- ▶ Converges
- Diverges
- ▶ May converges or diverges
- ▶ Gives no information

Question No: 33 (Marks: 1) - Please choose one

$$\sum_{k=1}^{\infty} |u_k| = |u_1| + |u_2| + |u_3| + \dots + |u_k| + \dots$$

If the series

converges , then which of

$$\sum_{k=1}^{\infty} u_k = u_1 + u_2 + u_2 + \dots + \dots$$

the following is true for

- Converges
- ▶ Diverges
- ► Gives no information

Question No: 34 (Marks: 1) - Please choose one

$$\rho = \lim_{k \to \infty} \frac{|u_{k+1}|}{|u_k|}$$

be a series with nonzero terms and suppose that , then which of the following is true?

► Then the series

- converges absolutely and therefore converges ► The series
- ▶ May converges or diverges
- ► Gives no information

Question No: 35 (Marks: 1) - Please choose one

$$\int_{-1}^{1} (x-1) \ dx = \underline{\hspace{1cm}}$$

Question No: 36 (Marks: 1) - Please choose one

How many critical points exist for a function $\int_{-\infty}^{\infty}$ if

$$f'(x) = (x-3)(x-2)$$

- ➤ Zero
- ➤ One
- ► Two
- ► Four

Question No: 37 (Marks: 1) - Please choose one

$$\log_b ac = \underline{\hspace{1cm}}$$

 $\log_b a$ $\log_b c$

 $(\log_b a)(\log_b c)$

Question No: 38 (Marks: 1) - Please choose one

 $\log_b a^r = \underline{\hspace{1cm}}$

 $a \log_b r$

 $r \log_b a$

 $\log_b a$ $\log_b r$

 $\log_b a + \log_b r$

Question No: 39 (Marks: 1) - Please choose one

$$y = \frac{2\sqrt{2}}{3}x^{\frac{3}{2}}$$
; $0 \le x \le 2$

Let

then which of the following is the length of the curve?

$$L = \int_0^2 \sqrt{\left[\frac{d}{dx} \left(\frac{2\sqrt{2}}{3}x^{\frac{3}{2}}\right)\right]^2} dx$$

Question No: 40 (Marks: 1) - Please choose one

Which of the following are *first two* terms for the Taylor series of $f(x) = e^{-x}$ at x= 0?

$$\begin{array}{c}
1+(1)(x-0) \\
 & \\
1+(-1)(x+0) \\
 & \\
1+(-1)(x-0) \\
 & \\
 & \\
 & \\
\end{array}$$

Question No: 41 (Marks: 2)

$$\int_{2}^{3} (1-x)dx$$

Evaluate the integral

$$\int_{2}^{3} (1-x)dx$$

$$\Rightarrow x - x^{2} \frac{1}{2} |_{2}^{3}$$

$$= \frac{1}{2} |2x - x^{2}|_{2}^{3}$$

$$= \frac{1}{2} (2(3-2) - (3-2)^{2})$$

$$= \frac{1}{2} (2-1)$$

$$= \frac{1}{2}$$

Question No: 42 (Marks: 2)

$$\int_{2}^{+\infty} \frac{dx}{x^2}$$

Evaluate the improper integral

Question No: 43 (Marks: 2)

A function $f(x) = x^2 - 4x - 9$ has critical point 2 in an interval [0, 5]. Find the maximum value of the function and point having this value.

Question No: 44 (Marks: 3)

$$\frac{5-6\sin^2 x}{\sin^2 x}dx$$

Evaluate:

$$\int \frac{5 - 6\sin^2 x}{\sin^2 x} dx$$

Question No: 45 (Marks: 3)

Find the area of the region bounded by the curve $y=x^2$, x>0, and bounded on the sides by the lines y=1 and y=4

$$y = x^2 , x > 0$$

So we have

$$A = \int_{1}^{3} x^{2} dx$$

$$= \frac{x^{3}}{3} I_{1}^{4}$$

$$= \frac{1}{3} (4 - 1)^{3}$$

$$= \frac{1}{3} (3)^{3}$$

$$= 9$$

Question No: 46 (Marks: 3)

Determine whether the following sequence converges or diverges. If it converges, find the limit.

$$\lim_{n\to\infty}\frac{5n^2-1}{20n+7n^2}$$

Question No: 47 (Marks: 5)

Use the Alternating series Test to determine whether the given series converges

$$\sum_{1}^{\infty} \frac{(-1)^{n-1} \cdot n}{2^{n}}$$

Question No: 48 (Marks: 5)

Evaluate the integral

$$\int_{\frac{\pi}{2}}^{0} \frac{1 + \cos 2t}{2} dt$$

Solution

$$\int_{\frac{\pi}{2}}^{0} \frac{1 + \cos 2t}{2} dt$$

$$u = 2t$$

$$\frac{du}{dt} = 2dt$$

$$du = 2dt$$

$$so$$

$$= \frac{1}{4} \int_{\frac{\pi}{2}}^{0} 1 + \cos u du$$

$$= \frac{1}{4} |u + \sin u|_{\frac{\pi}{2}}^{0}$$

$$= \frac{1}{4} |2t + \sin 2t|_{\frac{\pi}{2}}^{0}$$

$$= \frac{1}{4} (2\frac{\pi}{2} + \sin 2\frac{\pi}{2})$$

$$= \frac{1}{4} (\pi + \sin \pi)$$

$$= \frac{1}{4} (\pi + 0)$$

$$= \frac{\pi}{4}$$

Question No: 49 (Marks: 5)

Evaluate the sums

$$\sum_{k=1}^{5} k(3k+5)$$
= 1(3+5) + 2(6+5) + 3(9+5) + 4(12+5) + 5(15+5)
= 8 + 22 + 3(45) + 4(60) + 5(75)
= 8 + 22 + 135 + 240 + 375
= 780

Question No: 50 (Marks: 10)

Find the volume of the solid that results when the region enclosed by the given curves is revolved about the x – axis.

$$y = 1 + x^3$$
, $x = 1, x = 2, y = 0$

from
$$V = \int_{a}^{b} \pi [f(x)]^{2} dx$$

$$V = \int_{1}^{2} \pi [1 + x^{3}]^{2} dx$$

$$V = \int_{1}^{2} \pi [1 + x^{5} + 2x^{3}] dx$$

$$V = \pi \int_{1}^{2} (1 + x^{5} + 2x^{3}) dx$$

$$V = \pi | (x + \frac{1}{6}x^{6} + \frac{1}{2}x^{4})|_{1}^{2}$$

$$V = \pi ((2 - 1) + \frac{1}{6}(2 - 1)^{6} + \frac{1}{2}(2 - 1)^{4})$$

$$V = \pi \{((2 - 1) + \frac{1}{6}(2 - 1)^{6} + \frac{1}{2}(2 - 1)^{4})\}$$

$$V = \pi \{((1) + \frac{1}{6} + \frac{1}{2})\}$$

$$V = \frac{\pi (6 + 1 + 3)}{6}$$

$$V = \frac{\pi (10)}{6} = \pi \frac{5}{3}$$

This paper is solved by our best knowledge. In the case of any error/correction/suggestion, please contact at quishanvu@yahoo.com, with reference to the concerned paper's number.

FINALTERM EXAMINATION 2009 (Session - 1)

Calculus & Analytical Geometry-I

Question No: 1 (Marks: 1) - Please choose one
If f is a twice differentiable function at a stationary point x_0 and $f''(x_0) > 0$ then f has relative
➤ Minima ➤ Maxima ➤ None of these
Question No: 2 (Marks: 1) - Please choose one
If f is a twice differentiable function at a stationary point x_0 and $f''(x_0) < 0$ then f has relative At
MinimaMaximaNone of these
Question No: 3 (Marks: 1) - Please choose one
$\lim_{x \to 0} \frac{\sin 2x}{x} =$

Question No: 4 (Marks: 1) - Please choose one

$$\lim_{x\to 0^+} \frac{\ln x}{1/x} = ----$$

► e

► None of these

Question No: 5 (Marks: 1) - Please choose one

$$\frac{d(\tan x)}{dx} =$$

 $ightharpoonup co \sec x$

 $ightharpoonup co \sec^2 x$

Question No: 6 (Marks: 1) - Please choose one

$$y = 4$$

If "the

$$\frac{-1}{r^2}$$

$$\triangleright \overline{x}$$

Question No: 7 (Marks: 1) - Please choose one

Consider a function h(x) and a constant c then

$$\frac{d}{dx}\big((c)\left\{h(x)\right\}\big) = \underline{\hspace{1cm}}$$

$$\frac{d}{dx}(h(x))$$

$$\frac{d}{dx}(h(cx))$$

$$c \frac{d}{dx} (h(x))$$

Question No: 8 (Marks: 1) - Please choose one

Suppose that f and g are differentiable functions of g then

$$\frac{d}{dx}[f][g] =$$

$$\frac{[f'][g]-[f][g']}{g^2}$$

$$[f'][g] + [f][g]$$

$$[f'][g] - [f][g']$$

Ouestion No: 9 (Marks: 1) - Please choose one

$$\frac{d}{dx}[x^n] = nx^{n-1}$$

The power rule,

holds if n is

- ► An integer
- ► A rational number
- ► An irrational number
- ► All of the above

Question No: 10 (Marks: 1) - Please choose one

Let a function f be defined on an interval, and let x_1 and x_2 denotes two distinct points in that interval. If $f(x_1) = f(x_2)$ for all points x_1 and x_2 then

which of the following statement is correct?

- ightharpoonup f is a decreasing function
- ightharpoonup f is an increasing function
- ▶ f is a constant function

Question No: 11 (Marks: 1) - Please choose one

If f''(x) < 0 on an open interval (a,b) then which of the following statement is correct?

- ightharpoonup f is concave up on (a, b).
- ightharpoonup f is concave down on (a, b)
- ightharpoonup f is linear on (a, b).

Ouestion No: 12 (Marks: 1) - Please choose one

$$\sum_{k=1}^{n} f(x_{k}^{*}) \Delta x_{k}$$

What does 'n' represent in Riemann Sum

- ► No. of Circles
- ▶ No. of Rectangles
- ► No. of Loops
- ► No. of Squares

Question No: 13 (Marks: 1) - Please choose one

$$\lim_{x \to -\infty} f(x) = +\infty \quad and \quad \lim_{x \to +\infty} f(x) = +\infty$$

If f is continuous function such that then has

- ▶ maximum value but no minimum
- ▶ minimum value but no maximum
- both maximum and minimum value

Question No: 14 (Marks: 1) - Please choose one

$$\int_{2}^{t} \frac{x^{2}}{2} dx$$

The expression , represents a function of :

- ightharpoonup Both t and x

Question No: 15 (Marks: 1) - Please choose one

$$\int cf(x)dx = \underline{\hspace{1cm}}$$

if c is a constant

Question No: 16 (Marks: 1) - Please choose one

Sigma notation is represented by which of the following Greek letter?

- $\triangleright \chi$

Question No: 17 (Marks: 1) - Please choose one

In the following figure, the area enclosed is bounded below by:

$$y = x +$$

$$y = x^{2}$$

$$x = 2$$

$$x = 0$$

Question No: 18 (Marks: 1) - Please choose one

In the following figure, the area bounded on the sides by the lines are:

- x = 0
- x = 0 and x =
- x = 6

Question No: 19 (Marks: 1) - Please choose one

What is the area of the region in the following figure?

$$A = \int_{0}^{2} \left[(x+6) - (x^{2}) \right] dx$$

$$A = \int_{x}^{2} \left[(x+6) - (x^{2}) \right] dx$$

$$A = \int_{0}^{2} \left[\left(x + 6 \right) + \left(x^{2} \right) \right] dx$$

$$A = \int_{0}^{x} \left[\left(x + 6 \right) - \left(x^{2} \right) \right] dx$$

Question No: 20 (Marks: 1) - Please choose one

$$y = f(x) = 3x + 1$$

Which of the following is approximate area under the curve over the interval [2, 4], evaluated by using the formula

$$Area = f(x_1^*) \Delta x + f(x_2^*) \Delta x$$

If the interval [2, 4] is divided into two sub-intervals of

length and x_1^* and x_2^* are left endpoint of each sub-

▶ 23

Question No: 21 (Marks: 1) - Please choose one

$$y = f(x) = 2x + 3$$

Which of the following is approximate area under the curve over the interval [0,2], evaluated by using the formula

$$Area = f(x_1^*) \Delta x + f(x_2^*) \Delta x$$

If the interval $\begin{bmatrix} 0,\,2 \end{bmatrix}$ is divided into two sub-intervals of equal length and X_1^* and X_2^* are right endpoint of each sub-interval.

▶ 12

Question No: 22 (Marks: 1) - Please choose one

If
$$x > 0$$
 then $\frac{d}{dx}[\ln x] = \underline{\hspace{1cm}}$

Question No: 23 (Marks: 1) - Please choose one

Suppose f and g are integrable functions on [a,b] and c is a constant, then $\int c \left[f(x) + g(x) \right] dx = \underline{\hspace{1cm}}$

$$\int_{a}^{b} f(cx)dx + \int_{a}^{b} g(cx)dx$$

Question No: 24 (Marks: 1) - Please choose one

If the function f is continuous on [a,b] and if $f(x) \ge 0$ for all f(x) in [a,b], then which of the following gives area under the curve y = f(x) over the interval [a,b]?

$$\lim_{x\to\infty}\sum_{k=1}^n [x_k][f(x_k)] \qquad \text{where n is number of subdivisions of } [a,b]$$

 $\pi[radius]^2$

► (Width) (Height)

Question No: 25 (Marks: 1) - Please choose one

y = 3x and $y = 2x^2$

Let region R in the first quadrant enclosed between revolved about the

x-axis . Which of the following equation gives the volume of a solid by cylindrical

shells?

$$V = \int_{0}^{\frac{3}{2}} x(3x - 2x^2) dx$$

$$V = \int_{0}^{\frac{3}{2}} 2\pi (3x - 2x^2) dx$$

$$V = \int_{-1}^{\frac{3}{2}} 2\pi (3x - 2x^2) dx$$

Question No: 26 (Marks: 1) - Please choose one

Let f is a smooth function on [a, b]. What will be the arc length L of the curve y = f(x) from x = a to x = b?

$$L = \int_{b}^{a} \sqrt{1 + [f'(x)]} dy$$

$$L = \int_{0}^{a} \sqrt{1 + [f'(x)]} dy$$

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]} dx$$

Question No: 27 (Marks: 1) - Please choose one

If f is continuous on (a, b] but does not have a limit from the right then the

$$\int_{a}^{b} f(x)dx = \lim_{l \to a} \int_{l}^{b} f(x)dx$$

integral defined by

is called:

- ▶ Improper
- ► Proper
- ▶ Line

Question No: 28 (Marks: 1) - Please choose one

 $\frac{a_{n+1}}{2} > 1$ a_n

For a sequence if the ratio of successive terms is known as:

then the sequence

- Increasing
- ▶ Decreasing
- ► Nondecreasing
- ▶ Nonincreasing

Question No: 29 (Marks: 1) - Please choose one

$$\frac{a_{n+1}}{a_n} < 1$$

if the ratio of successive terms For a sequence is known as:

then the sequence

- ▶ Increasing
- Decreasing
- ▶ Nondecreasing
- ▶ Nonincreasing

Question No: 30 (Marks: 1) - Please choose one

$$\int \frac{3x^2 + 4x + 1}{x^3 + 2x^2 + x - 3} \, dx$$

Consider the indefinite integral

Let
$$t = x^3 + 2x^2 + x - 3$$

Is the following substitution correct?

$$\int \frac{3x^2 + 4x + 1}{x^3 + 2x^2 + x - 3} \, dx = \int \frac{1}{t} \, dt$$

➤ Yes

Question No: 31 (Marks: 1) - Please choose one

$$\rho = \lim_{k \to \infty} \frac{u_{k+1}}{u_k}$$

The series $\sum u_k$ be a series with positive terms and suppose that if $\rho = 1$, then which of the following is true?

- ▶ Converges
- ▶ Diverges
- ► May converges or diverges
- ▶ Gives no information

Question No: 32 (Marks: 1) - Please choose one

$$\sum u_k$$

The series $\sum u_k$ be a series with positive terms and suppose that

$$\rho = \lim_{k \to \infty} \sqrt[k]{u_k} = \lim_{k \to \infty} (u_k)^{\frac{1}{k}}$$
 if $\rho = 1$, then which of the following is true?

- ▶ Converges
- Diverges
- ▶ May converges or diverges
- ▶ Gives no information

Question No: 33 (Marks: 1) - Please choose one

$$\sum_{k=1}^{\infty} |u_k| = |u_1| + |u_2| + |u_3| + \dots + |u_k| + \dots$$

If the series

converges , then which of

$$\sum_{k=1}^{\infty} u_k = u_1 + u_2 + u_2 + \dots + \dots$$

the following is true for

- Converges
- ▶ Diverges
- ► Gives no information

Question No: 34 (Marks: 1) - Please choose one

$$\rho = \lim_{k \to \infty} \frac{|u_{k+1}|}{|u_k|}$$

be a series with nonzero terms and suppose that , then which of the following is true?

► Then the series

- converges absolutely and therefore converges ► The series
- ▶ May converges or diverges
- ► Gives no information

Question No: 35 (Marks: 1) - Please choose one

$$\int_{-1}^{1} (x-1) \ dx = \underline{\hspace{1cm}}$$

Question No: 36 (Marks: 1) - Please choose one

How many critical points exist for a function $\int_{-\infty}^{\infty}$ if

$$f'(x) = (x-3)(x-2)$$

- ➤ Zero
- ➤ One
- ► Two
- ► Four

Question No: 37 (Marks: 1) - Please choose one

$$\log_b ac = \underline{\hspace{1cm}}$$

 $\log_b a$ $\log_b c$

 $(\log_b a)(\log_b c)$

Question No: 38 (Marks: 1) - Please choose one

 $\log_b a^r = \underline{\hspace{1cm}}$

 $a \log_b r$

 $r \log_b a$

 $\log_b a$ $\log_b r$

 $\log_b a + \log_b r$

Question No: 39 (Marks: 1) - Please choose one

$$y = \frac{2\sqrt{2}}{3}x^{\frac{3}{2}}$$
; $0 \le x \le 2$

Let

then which of the following is the length of the curve?

$$L = \int_0^2 \sqrt{\left[\frac{d}{dx} \left(\frac{2\sqrt{2}}{3}x^{\frac{3}{2}}\right)\right]^2} dx$$

Question No: 40 (Marks: 1) - Please choose one

Which of the following are *first two* terms for the Taylor series of $f(x) = e^{-x}$ at x= 0?

$$\begin{array}{c}
1+(1)(x-0) \\
 & \\
1+(-1)(x+0) \\
 & \\
1+(-1)(x-0) \\
 & \\
 & \\
 & \\
\end{array}$$

Question No: 41 (Marks: 2)

$$\int_{2}^{3} (1-x)dx$$

Evaluate the integral

$$\int_{2}^{3} (1-x)dx$$

$$= |x-x^{2} \frac{1}{2}|_{2}^{3}$$

$$= \frac{1}{2}|2x-x^{2}|_{2}^{3}$$

$$= \frac{1}{2}(2(3-2)-(3-2)^{2})$$

$$= \frac{1}{2}(2-1)$$

$$= \frac{1}{2}$$

Question No: 42 (Marks: 2)

$$\int_{2}^{+\infty} \frac{dx}{x^{2}}$$

Evaluate the improper integral

Question No: 43 (Marks: 2)

A function $f(x) = x^2 - 4x - 9$ has critical point 2 in an interval [0, 5]. Find the maximum value of the function and point having this value.

Question No: 44 (Marks: 3)

$$\frac{5 - 6\sin^2 x}{\sin^2 x} dx$$

Evaluate:

$$\int \frac{5 - 6\sin^2 x}{\sin^2 x} dx$$

Question No: 45 (Marks: 3)

Find the area of the region bounded by the curve $y=x^2$, x>0, and bounded on the sides by the lines y=1 and y=4

$$y = x^2 \quad , \quad x > 0$$

So we have

$$A = \int_{1}^{4} x^{2} dx$$

$$= \left| \frac{x^{3}}{3} \right|_{1}^{4}$$

$$= \frac{1}{3} (4 - 1)^{3}$$

$$= \frac{1}{3} (3)^{3}$$

$$= 9$$

Question No: 46 (Marks: 3)

Determine whether the following sequence converges or diverges. If it converges, find the limit.

$$\lim_{n\to\infty}\frac{5n^2-1}{20n+7n^2}$$

Question No: 47 (Marks: 5)

Use the Alternating series Test to determine whether the given series converges

$$\sum_{1}^{\infty} \frac{(-1)^{n-1} \cdot n}{2^{n}}$$

Question No: 48 (Marks: 5)

Evaluate the integral

$$\int_{\frac{\pi}{2}}^{0} \frac{1 + \cos 2t}{2} dt$$

Solution

$$\int_{\frac{\pi}{2}}^{0} \frac{1 + \cos 2t}{2} dt$$

$$u = 2t$$

$$\frac{du}{dt} = 2dt$$

$$du = 2dt$$

$$so$$

$$= \frac{1}{4} \int_{\frac{\pi}{2}}^{0} 1 + \cos u du$$

$$= \frac{1}{4} |u + \sin u|_{\frac{\pi}{2}}^{0}$$

$$= \frac{1}{4} |2t + \sin 2t|_{\frac{\pi}{2}}^{0}$$

$$= \frac{1}{4} (2\frac{\pi}{2} + \sin 2\frac{\pi}{2})$$

$$= \frac{1}{4} (\pi + \sin \pi)$$

$$= \frac{1}{4} (\pi + 0)$$

$$= \frac{\pi}{4}$$

Question No: 49 (Marks: 5)

Evaluate the sums

$$\sum_{k=1}^{5} k(3k+5)$$
= 1(3+5) + 2(6+5) + 3(9+5) + 4(12+5) + 5(15+5)
= 8 + 22 + 3(45) + 4(60) + 5(75)
= 8 + 22 + 135 + 240 + 375
= 780

Question No: 50 (Marks: 10)

Find the volume of the solid that results when the region enclosed by the given curves is revolved about the x – axis.

$$y = 1 + x^3$$
, $x = 1, x = 2, y = 0$

from
$$V = \int_{a}^{b} \pi [f(x)]^{2} dx$$

$$V = \int_{1}^{2} \pi [1 + x^{3}]^{2} dx$$

$$V = \int_{1}^{2} \pi [1 + x^{5} + 2x^{3}] dx$$

$$V = \pi \int_{1}^{2} (1 + x^{5} + 2x^{3}) dx$$

$$V = \pi | (x + \frac{1}{6}x^{6} + \frac{1}{2}x^{4})|_{1}^{2}$$

$$V = \pi ((2 - 1) + \frac{1}{6}(2 - 1)^{6} + \frac{1}{2}(2 - 1)^{4})$$

$$V = \pi \{((2 - 1) + \frac{1}{6}(2 - 1)^{6} + \frac{1}{2}(2 - 1)^{4})\}$$

$$V = \pi \{((1) + \frac{1}{6} + \frac{1}{2})\}$$

$$V = \frac{\pi (6 + 1 + 3)}{6}$$

$$V = \frac{\pi (10)}{6} = \pi \frac{5}{3}$$

This paper is solved by our best knowledge. In the case of any error/correction/suggestion, please contact at quishanvu@yahoo.com, with reference to the concerned paper's number.

FINALTERM EXAMINATION 2009

Calculus & Analytical Geometry-I

Time: 120 min Marks: 80

Question No: 1 (Marks: 1) - Please choose one	
If f is a twice differentiable function at a stationary	point x_0 and $f''(x_0) > 0$ then f
has relative At x_0	
<mark>▶ Minima</mark> ▶ Maxima	
► None of these	

Question No: 2 (Marks: 1) - Please choose one

In the notation $\int f(x)dx = F(x) + C$

C represents

► A polynomial ► A Constant

- ► A Variable
- ▶ None of these

Question No: 3 (Marks: 1) - Please choose one

According to Power-Rule of differentiation, if $f(x) = x^n$ where n is a real number, then $\frac{d}{dx}[x^n] =$

Question No: 4 (Marks: 1) - Please choose one

$$\int_{0}^{\infty} \frac{2x - y = -3}{1 + 2}$$
 then then

Question No: 5 (Marks: 1) - Please choose one

 $30^{0} =$ _____

Question No: 6 (Marks: 1) - Please choose one

If a function g is differentiable at a point x and a function f is differentiable at a point g(x), then the _____ is differentiable at point x.

- ► Composition (f o g)
- ► Quotient (f/g) ► Product
- (f + g)► Sum

Question No: 7 (Marks: 1) - Please choose one

Let a function f be defined on an interval, and let x_1 and x_2 denote points in that

 $f(x_1) < f(x_2)$ whenever $x_1 < x_2$ then which of the following statement is interval. If correct?

- ightharpoonup f is an increasing function.
- ightharpoonup f is a decreasing function.
- ightharpoonup f is a constant function.

Question No: 8 (Marks: 1) - Please choose one

If f''(x) < 0 on an open interval (a,b) then which of the following statement is correct?

- ightharpoonup f is concave up on (a, b).
- ightharpoonup f is concave down on (a, b)
- ightharpoonup f is linear on (a, b).

Question No: 9 (Marks: 1) - Please choose one

$$\sum_{k=1}^{n} f(x_{k}^{*}) \Delta x_{k}$$

The sum

is known as:

- ► Riemann Sum
- ► General Sum
- ► Integral Sum
- ► Geometric Sum

Question No: 10 (Marks: 1) - Please choose one

$$\sum_{k=1}^{n} f(x_{k}^{*}) \Delta x$$

What does 'n' represent in Riemann Sum

- ► No. of Circles
- ► No. of Rectangles
- ► No. of Loops
- ► No. of Squares

Question No: 11 (Marks: 1) - Please choose one

What is the area of the region in the following figure?

$$A = \int_{0}^{2} \left[(x+6) - (x^{2}) \right] dx$$

$$A = \int_{0}^{2} \left[\left(x + 6 \right) - \left(x^{2} \right) \right] dx$$

$$A = \int_{0}^{2} \left[(x+6) + (x^{2}) \right] dx$$

$$A = \int_{0}^{x} \left[\left(x + 6 \right) - \left(x^{2} \right) \right] dx$$

Question No: 12 (Marks: 1) - Please choose one

$$\int_{1}^{4} f(x) dx = 2 \int_{1}^{4} g(x) dx = 10$$
then which of the following is value of
$$\int_{1}^{4} [3f(x) - g(x)] dx$$

$$\uparrow_{1} [3f(x) - g(x)] dx$$

$$\uparrow_{1} [3f(x) - g(x)] dx$$

$$\uparrow_{1} [3f(x) - g(x)] dx$$

$$\uparrow_{2} [3f(x) - g(x)] dx$$

$$\uparrow_{3} [3f(x) - g(x)] dx$$

$$\uparrow_{4} [3f(x) - g(x)] dx$$

$$\uparrow_{5} [3f(x) - g(x)] dx$$

$$\uparrow_{6} [3f(x) - g(x)] dx$$

Question No: 13 (Marks: 1) - Please choose one

$$\int_{0}^{1} 2x(x^{2} + 4)dx = \underline{\hspace{1cm}}$$

Question No: 14 (Marks: 1) - Please choose one

Let f is a smooth function on [0, 3]. What will be the arc length L of the curve y = f(x)from

$$x = 0 \text{ to } x = 3?$$

$$L = \int_{0}^{3} \sqrt{1 + [f(x)]^{2}} \, dy$$

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2}$$

$$L = \int_{1}^{3} \sqrt{1 + [f'(x)]^{2}} dy$$

$$L = \int_{0}^{3} \sqrt{1 + [f'(x)]^{2}} dx$$

Question No: 15 (Marks: 1) - Please choose one

Let f be a smooth, nonnegative function on [1, 3]. What is the surface area S generated by revolving the portion of the curve y = f(x) between x = 1 and x = 3 about the x-axis?

$$S = \int_{0}^{2} 2\sqrt{1 + [f(x)]} dx$$

$$S = \int_{0}^{3} 2\pi f(x) \sqrt{1 + [f'(x)]} dx$$

$$S = \int_{0}^{2} 2\sqrt{1 + [f'(x)]} dx$$

 $S = \int 2\pi f(x) \sqrt{1 + [f'(x)]^2} dx$

Question No: 16 (Marks: 1) - Please choose one

Let an object is displaced 2m by a force of 2N. What is the work done W?

▶ 2

Question No: 17 (Marks: 1) - Please choose one

$$\int_{0}^{+\infty} f(x)dx = \lim_{l \to \infty} \int_{0}^{l} f(x)dx$$

Consider the improper integral

if the limit exists then

which of the following can be occured? ▶ Diverges

► Converges

► Test fail

Question No: 18 (Marks: 1) - Please choose one

If f is continuous on (a, b] but does not have a limit from the right then the integral

$$\int_{a}^{b} f(x)dx = \lim_{l \to a} \int_{l}^{b} f(x)dx$$

defined by

is called:

- ► Proper
- ► Line

Question No: 19 (Marks: 1) - Please choose one

For a sequence is known as: $a_{n+1} - a_n < 0$ then the sequence is known as:

- ► Increasing
- Decreasing
- ► Nondecreasing
- ► Nonincreasing

Ouestion No: 20 (Marks: 1) - Please choose one

$$\frac{a_{n+1}}{a_n} > 1$$

For a sequence if the ratio of successive terms then the sequence is known as:

- ► Increasing
- ▶ Decreasing
- ► Nondecreasing
- ► Nonincreasing

Question No: 21 (Marks: 1) - Please choose one

 $\{n\}_{n=0}^{\infty}$

Which of the following is true for the sequence

- ► Nonincreasing
- ► Nondecreasing
- ▶ Increasing
- **▶** Decreasing

Question No: 22 (Marks: 1) - Please choose one

 $f(n) = a_n \qquad f'(n) \le 0$ If is the nth term of the sequence and f is differentiable and then the sequence will be:

- ► Increasing
- ▶ Decreasing
- ► Nondecreasing

► Nonincreasing

Question No: 23 (Marks: 1) - Please choose one

If Newton's Method is used to approximate the real solutions of the equation

$$x^3 + x - 3 = 0$$
 and the first guess $x_1 = 1$. What is x_2 ?

- 5
- 1
- ▶ 4 _
- $\rightarrow \frac{-1}{2}$
- $\rightarrow \frac{3}{4}$
- 3
- **▶** 2

Question No: 24 (Marks: 1) - Please choose one

Suppose that we apply Newton's Method to approximate the real solutions of the

equation
$$x^3 - 2x^2 - 1 = 0$$
. If we start at $x_1 = 2$, then which of the following is value of $\frac{x_2}{?}$

- ▶ 6
- **▶** 2.25
- **▶** 0

Question No: 25 (Marks: 1) - Please choose one

If the sequence of partial sum of a series converges then what will the series show itself?

- ▶ Diverges
- ➤ Converge
- ► Gives no information

Question No: 26 (Marks: 1) - Please choose one

$$\rho = \lim_{k \to \infty} \frac{u_{k+1}}{u_k}$$

The series be a series with positive terms and suppose that if $\rho > 1$

, then which of the following is true?

- ► Converges
- **▶** Diverges
- ► May converges or diverges
- ► Gives no information

Question No: 27 (Marks: 1) - Please choose one

$$\rho = \lim_{k \to \infty} \frac{u_{k+1}}{u_k}$$

The series be a series with positive terms and suppose that $\rho = 1$

1

, then which of the following is true?

- ► Converges
- **▶** Diverges
- ► May converges or diverges
- ► Gives no information

Question No: 28 (Marks: 1) - Please choose one

The series

be a series with positive terms and suppose that

$$\rho = \lim_{k \to \infty} \sqrt[k]{u_k} = \lim_{k \to \infty} (u_k)^{\frac{1}{k}}$$
if $\rho = 1$, then which of the following is true?

- ► Converges
- ▶ Diverges
- ► May converges or diverges
- ► Gives no information

Question No: 29 (Marks: 1) - Please choose one

For an alternating series to be convergent which of the following condition must be satisfied?

$$a_1 > a_2 > a_3 \dots > a_k > \dots$$

$$a_1 \le a_2 \le a_3 \dots \dots \le a_k \le \dots$$

► Gives no information

Question No: 30 (Marks: 1) - Please choose one

For an alternating series to be convergent which of the following condition must be satisfied?

$$a_1 \ge a_2 \ge a_3 \dots \ge a_k \ge \dots$$

$$\lim_{k \to \infty} a_k = 0$$

$$a_1 \le a_2 \le a_3 \dots \le a_k \le \dots$$

$$\lim_{k \to \infty} a_k = 1$$

Question No: 31 (Marks: 1) - Please choose one

What is the base of natural logarithm?

▶ 10

- **▶** 5
- ► Any real number

Question No: 32 (Marks: 1) - Please choose one

A function F is called an antiderivative of a function f on a given interval if fon a given interval if ff on a given interval if ff on a given interval if

F(x)

f'(x)

f''(x)

Question No: 33 (Marks: 1) - Please choose one

$$\log_b ac =$$

$$\log_b a + \log_b c$$

$$\log_b a - \log_b c$$

$$\frac{\log_b a}{}$$

$$\frac{c_b}{\log_b c}$$

$$(\log_b a)(\log_b c)$$

Question No: 34 (Marks: 1) - Please choose one

$$\log_b a^r = \underline{\hspace{1cm}}$$

 $a\log_b r$

$r\log_b a$

$$\log_b a$$

$$\log_b r$$

 $\log_b a + \log_b r$

Question No: 35 (Marks: 1) - Please choose one

$$\log_b \frac{1}{c} = \underline{\hspace{1cm}}$$

 $\log_b a$

$$1 - \log_b c$$

 $-\log_b a$

 $ightharpoonup 1 + \log_b c$

Question No: 36 (Marks: 1) - Please choose one

$$\log_b \frac{1}{t} = \underline{\hspace{1cm}}$$

$$\log_b t$$

$$1 - \log_b t$$

$$1 + \log_b t$$

$$-\log_b t$$

Question No: 37 (Marks: 1) - Please choose one

What is the sum of following series?

$$1^2 + 2^2 + 3^2 + 4^2 + \dots + n^2$$

$$\frac{n(n+1)(2n+1)}{6}$$

$$\frac{n(2n)(2n+1)}{6}$$

$$\frac{(n+1)(2n+1)}{6}$$

Question No: 38 (Marks: 1) - Please choose one

$$\sum_{k=1}^{n} \frac{k^3}{2} =$$

$$\frac{n(n+1)}{4}$$

$$[n(n+1)]^2 \over 8$$

$$n(n+1)(2n+1)$$

$$12$$

Question No: 39 (Marks: 1) - Please choose one

$$y = \frac{2\sqrt{2}}{3}x^{\frac{3}{2}} - 2x ; \ 0 \le x \le 1$$

Let

then which of the following is the length of the curve?

$$L = \int_{0}^{1} \sqrt{1 + \left[\left(\frac{2\sqrt{2}}{3} x^{\frac{3}{2}} - 2x \right) \right]^{2} dx}$$

$$L = \int_{0}^{1} \sqrt{\left[\frac{d}{dx} \left(\frac{2\sqrt{2}}{3} x^{\frac{3}{2}} - 2x\right)\right]^{2} dx}$$

$$L = \int \sqrt{1 + \left[\frac{d}{dx} \left(\frac{2\sqrt{2}}{3} x^{\frac{3}{2}} - 2x \right) \right]^2} dx$$

Question No: 40 (Marks: 1) - Please choose one

at x = 0 be the Taylor series, then which of the following is also true?

- ► Arithmetic series
- ► Maclaurin series
- ► Geometric series
- ► Harmonic series

Question No: 41 (Marks: 2)

$$u = \frac{\pi}{2} - x \qquad \qquad \int_{0}^{\pi} \sin(\frac{\pi}{2} - x) dx$$

Using substitution

transform the integral

into variable u.

Question No: 42 (Marks: 2)

$$\int_{3}^{+\infty} \frac{dx}{2x^2}$$

Evaluate the improper integral

Question No: 43 (Marks: 2)

A function $f(x) = 6 - 2x - x^2$ has critical point 1 in an interval [-4, 3]. Find the absolute minimum value of the function.

Question No: 44 (Marks: 3)

Find the absolute maximum value of the function:

$$f(x) = 2x^3 + 3x^2 - 12x + 4$$
 on [-4,2]

Question No: 45 (Marks: 3)

Find the area of the region bounded by the curve $y = x^2 - 4x - 5$ and y = x + 1 (do not evaluate).

Question No: 46 (Marks: 3)

$$\left\{\frac{3}{n^2}\right\}_{n=1}^{\infty}$$

Determine whether the following sequence is strictly monotone:

Question No: 47 (Marks: 5)

Determine whether the sequence converges or diverges. If converges find limit

$$\lim_{n\to\infty} \frac{3^n + (-1)^n}{3^{n+1} + (-1)^{n+1}}$$

Question No: 48 (Marks: 5)

Find the lengths of the curves

$$x = \frac{t^2}{2}$$
, $y = \frac{(2t+1)^{\frac{3}{2}}}{3}$, $0 \le t \le 4$

Question No: 49 (Marks: 5)

$$\int \int \left[(x^4 + 2) \right] \left[\cos(x^5 + 10x) \right] dx$$

Evaluate the indefinite integral

by substitution method.

Question No: 50 (Marks: 10)

$$f(x) = e^{2x}$$

Find the Maclaurin series for