MIDTERM EXAMINATION Fall 2011 CS502- Fundamentals of Algorithms

Question No: 1 (Marks: 1) - Please choose one

Due to left complete nature of binary tree, the heap can be stored in

1. Arrays (Page 40)

- 2. Structures
- 3. Link Lis
- ► Stack

Question No: 1 (Marks: 1) - Please choose one

What type of instructions Random Access Machine (RAM) can execute?

- ► Algebraic and logic
- ► Geometric and arithmetic
- ► Arithmetic and logic (Page 10)
- ► Parallel and recursive

Question No: 1 (Marks: 1) - Please choose one

For Chain Matrix Multiplication we can not use divide and conquer approach because,

► We do not know the optimum k (Page 86)

 ▶ We use divide and conquer for sorting only ▶ We can easily perform it in linear time ▶ Size of data is not given

Question No: 1 (Marks: 1) - Please choose one

What is the total time to heapify?

1. O(log n) (Page 43)

- 2. $O(n \log n)$
- 3. $O(n^2 \log n)$
- 4. $O(\log^2 n)$

Question No: 1	(Marks: 1) - Please choose one	
word Algorithm of	comes from the name of the muslim author	

▶ <u>Abu Ja'far Mohammad ibn Musa</u> <u>al-Khowarizmi</u>.

Question No: 1 (Marks: 1) - Please choose one al-Khwarizmi's work was written in a book titled ______

▶ <u>al Kitab al-mukhatasar fi hisab al-jabr wa'l-muqabalah</u>

MIDTERM EXAMINATION Spring 2010 CS502- Fundamentals of Algorithms

Question No: 1 (Marks: 1) - Please choose one Random access machine or RAM is a/an

- 1. Machine build by Al-Khwarizmi
- 2. Mechanical machine
- 3. Electronics machine
- 4. Mathematical model (Page 10)

Question No: 2 (Marks: 1) - Please choose one

_____ is a graphical representation of an algorithm

- 1. \sum_{Θ} notation
- 2. notation
- 3. Flowchart Click here for detail
- 4. Asymptotic notation

Question No: 3 (Marks: 1) - Please choose one

A RAM is an idealized machine with ______ random-access memory.

- 1. 256MB
- 2. 512MB
- 3. an infinitely large (Page 10)
- 4. 100GB

What type of instructions Random Access Machine (RAM) can execute? Choose best answer

- 1. Algebraic and logic
- 2. Geometric and arithmetic
- 3. Arithmetic and logic (Rep)
- 4. Parallel and recursive

Question No: 5 (Marks: 1) - Please choose one

What will be the total number of max comparisons if we run brute-force maxima algorithm with n elements?

Question No: 6 (Marks: 1) - Please choose one

What is the solution to the recurrence T(n) = T(n/2) + n.

- 1. *O*(log*n*)
- 2. *O*(*n*) (Page 37)
- 3. $O(n \log n)$
- 4. $O(n^2)$

 $\label{eq:Question No: 7} \quad (\ Marks: 1\) \quad \ \ \, \text{Please choose one}$

Consider the following code: For(j=1; j<n;j++) For(k=1; k<15;k++) For(l=5; l<n; l++) { Do_something_constant(); }

What is the order of execution for this code.

- **2.** O(n)3. $O(n_2)$ 4. $O(n \log n)$ 5. $O(n^2)$
- 5. $O(n^2)$

Question No: 8 (Marks: 1) - Please choose one What is the total time to heapify?

► O(log n) rep

- 2. $O(n \log n)$
- 3. $O(n^2 \log n)$
- 4. $O(\log^2 n)$

```
Question No: 9 (Marks: 1) - Please choose one
Consider the following Algorithm:
Factorial (n){
    if (n=1)
        return 1
    else
        return (n * Factorial(n-1))
```

Recurrence for the following algorithm is:

3. T(n) = T(n-1) +1 4. T(n) = nT(n-1) +1 5. T(n)= T(n-1) +n 6. T(n)=T(n(n-1)) +1

Question No: 10 (Marks: 1) - Please choose one When we call heapify then at each level the comparison performed takes time

► It will take Θ (1) (Page 43)

- 1. Time will vary according to the nature of input data
- 2. It can not be predicted
- 3. It will take $\Theta(\log n)$

Question No: 11 (Marks: 1) - Please choose one

In Quick sort, we don't have the control over the sizes of recursive calls

2. True (Page 40)

- 3. False
- 4. Less information to decide
- 5. Either true or false

Question No: 12 (Marks: 1) - Please choose one

Is it possible to sort without making comparisons?

- 3. Yes (Page 57)
- 4. No

Question No: 13 (Marks: 1) - Please choose one

If there are $\Theta(n^2)$ entries in edit distance matrix then the total running time is

- $\blacktriangleright \Theta(1)_2$
- \bullet Θ (n²) <u>Click here for detail</u>
- 1. Θ (n)
- 2. Θ (n log n)

For Chain Matrix Multiplication we can not use divide and conquer approach because,

► We do not know the optimum k (Page 86)

- 2. We use divide and conquer for sorting only
- 3. We can easily perform it in linear time
- 4. Size of data is not given

Question No: 15 (Marks: 1) - Please choose one

The Knapsack problem belongs to the domain of _____ problems.

► Optimization (Page 91)

- 1. NP Complete
- 2. Linear Solution
- 3. Sorting

Question No: 16 (Marks: 1) - Please choose one

Suppose we have three items as shown in the following table, and suppose the capacity of the knapsack is 50 i.e. W = 50.

Item	Value	Weight
1	60	10
2	100	20
3	120	30

The optimal solution is to pick

- 1. Items 1 and 2
- 2. Items 1 and 3
- 3. Items 2 and 3 (correct)
- 4. None of these

MIDTERM EXAMINATION Spring 2010 CS502- Fundamentals of Algorithms

Question No: 1 (Marks: 1) - Please choose one

For the Sieve Technique we take time

► T(nk) (Page 34)

- ►T(n / 3)
- ►n^2

►n/3

Question No: 1 (Marks: 1) - Please choose one

Sieve Technique applies to problems where we are interested in finding a single item from a larger set of _____

Select correct option:

▶ n items (Page 34)

- ▶ phases
- ▶ pointers
- ▶ constant

Question No: 1 (Marks: 1) - Please choose one

_ graphical representation of algorithm.

- ► asymptotic
- ► Flowchart (rep)

Question No: 1 (Marks: 1) - Please choose one who invented the quick sort

C.A.R. Hoare <u>Click here for detail</u>

Question No: 1 (Marks: 1) - Please choose one main elements to a divide-and-conquer

► Divide, conquer, combine (Page 27)

Question No: 1 (Marks: 1) - Please choose one Mergesort is a stable algorithm but not an in-place algorithm.

► True (Page 54)

► false

Question No: 1 (Marks: 1) - Please choose one
Counting sort the numbers to be sorted are in the range 1 to k where k is small.
► True (Page 57)
► False

MIDTERM EXAMINATION Spring 2007 CS502- Fundamentals of Algorithms

Question No: 1 (Marks: 1) - Please choose one Total time for heapify is:

► O $(\log^2 n)$ ► O $(n \log n)$ ► O $(n \log n)$ ► O $(\log n)$ Rep

Question No: 1 (Marks: 1) - Please choose one

If an algorithm has a complexity of $\log_2 n + \log_2 n + n$, we could say that it has complexity

- ► O(n)
- ► O($n \log_2 n$)
- ►O(3)
- ► O($\log_2 (\log_2 n)$
-)) \blacktriangleright O (log₂ n)

Question No: 1 (Marks: 1) - Please choose one In RAM model instructions are executed

► One after another (Page 10)

- ► Parallel
- ► Concurrent
- ► Random

In selection algorithm, because we eliminate a constant fraction of the array with each phase, we get the

► Convergent geometric series (Page 37)

► Divergent geometric series ► None of these

Question No: 1 (Marks: 1) - Please choose one

Due to left-complete nature of binary tree, heaps can be stored in

► Link list

- ► Structure
- Array (Page 40)

► None of above

CS609- System Programming Midterm Quizzes (Quiz No.1 & 2)

Quiz No.1 (04 - MAY - 2013)

Question No: 1 (Marks: 1) - Please choose one

The time assumed for each basic operation to execute on RAM model of computation is-----

Infinite Continuous **Constant (Page 10)** Variable

Question No: 1 (Marks: 1) - Please choose one

If the indices passed to merge sort algorithm are not equal, the algorithm may return immediately.

True False (Page 28)

Question No: 1 (Marks: 1) - Please choose one Brute-force algorithm uses no intelligence in pruning out decisions.

True (Page 18) False

8

In analysis, the Upper Bound means the function grows asymptotically no faster than its largest term.

True (Page 24)

False

$Question \ No: 1 \ (\ Marks: 1 \) \ \ \text{-Please choose one}$

For small values of n, any algorithm is fast enough. Running time does become an issue when n gets large.

True (Page 14) Fast

Question No: 1 (Marks: 1) - Please choose one

The array to be sorted is not passed as argument to the merge sort algorithm.

True False

Question No: 1 (Marks: 1) - Please choose one

In simple brute-force algorithm, we give no thought to efficiency.

True (Page 11)

False

Question No: 1 (Marks: 1) - Please choose one

The ancient Roman politicians understood an important principle of good algorithm design that is plan-sweep algorithm.

True

False (Page 27)[Divide and Conquer]

Question No: 1 (Marks: 1) - Please choose one

In 2d-space a point is said to be ______ if it is not dominated by any other point in that space.

Member Minimal Maximal (Page 11) Joint

Question No: 1 (Marks: 1) - Please choose one

An algorithm is a mathematical entity that is dependent on a specific programming language. True (Page 7) False

The running time of an algorithm would not depend upon the optimization by the compiler but that of an implementation of the algorithm would depend on it.

True (Page 13)

False

$Question \ No: 1 \ (\ Marks: 1 \) \ \ - \ Please \ choose \ one$

F (n) and g (n) are asymptotically equivalent. This means that they have essentially the same $_$ for large n.

Results Variables Size Growth rates (Page 23)

Question No: 1 (Marks: 1) - Please choose one

8n2 + 2n - 3 will eventually exceed $c2^{*}(n)$ no matter how large we make c2.

True (Page 25)

False

Question No: 1 (Marks: 1) - Please choose one

If we associate (x, y) integers pair to cars where x is the speed of the car and y is the negation of the price. High y value for a car means a _____ car.

Fast Slow Expensive Cheap (Page 11)

Question No: 1 (Marks: 1) - Please choose one

The function $f(n)=n(\log n+1)/2$ is asymptotically equivalent to n log n. Here Upper Bound means the function f(n) grows asymptotically ______ faster than n log n.

More Quiet Not (Page 24) At least

Question No: 1 (Marks: 1) - Please choose one

After sorting in merge sort algorithm, merging process is invoked. Select correct option:

True (Page 28) False

Asymptotic growth rate of the function is taken over_____ case running time. Select correct option: Best

Average Worst (Page 14) Normal

Question No: 1 (Marks: 1) - Please choose one

In analysis of $f(n) = n(n/5) + n-10 \log n$, f(n) is asymptotically equivalent to _____.

n 2n n+1 **n2 (Page 23)**

Question No: 1 (Marks: 1) - Please choose one

Algorithm is concerned with.....issues.

Macro Micro **Both Macro & Micro** (Page 8) Normal

Question No: 1 (Marks: 1) - Please choose one

We cannot make any significant improvement in the running time which is better than that of brute-force algorithm.

True False (Page 18)

Question No: 1 (Marks: 1) - Please choose one

In addition to passing in the array itself to Merge Sort algorithm, we will pass in ______other arguments which are indices.

Two (Page 28)

Three Four Five

Question No: 1 (Marks: 1) - Please choose one

Consider the following Algorithm: Fun(n){ if (n=1) return 1 else return (n * Fun(n-1)) } Recurrence for the above algorithm is:

In analysis, the Lower Bound means the function grows asymptotically at least as fast as its largest term.

True (Page 24)

False

Question No: 1 (Marks: 1) - Please choose one

Efficient algorithm requires less computational......

Memory Running Time **Memory and Running Time** (Page 9) Energy

Question No: 1 (Marks: 1) - Please choose one

The O-notation is used to state only the asymptotic _____bounds.

Two Lower **Upper (Page 25)** Both lower & upper

Question No: 1 (Marks: 1) - Please choose one

For the worst-case running time analysis, the nested loop structure containing one "for" and one "while" loop, might be expressed as a pair of _______nested summations.

1 2 (Page 16) 3

4

Question No: 1 (Marks: 1) - Please choose one

Before sweeping a vertical line in plane sweep approach, in start sorting of the points is done in increasing order of their ______ coordinates.

X (Page 18) Y Z X & Y

Question No: 1 (Marks: 1) - Please choose one Brute-force algorithm for 2D-Maxima is operated by comparing ______ pairs of points.

Two Some Most **All (Page 18)**

Question No: 1 (Marks: 1) - Please choose one

The function $f(n)=n(\log n+1)/2$ is asymptotically equivalent to nlog n. Here Lower Bound means function f(n) grows asymptotically at ______ as fast as nlog n.

Normal Least (Page 23) Most All

Question No: 1 (Marks: 1) - Please choose one

The definition of Theta-notation relies on proving _____asymptotic bound.

One Lower Upper **Both lower & upper (Page 25) rep**

Question No: 1 (Marks: 1) - Please choose one

In plane sweep approach, a vertical line is swept across the 2d-plane and ______structure is used for holding the maximal points lying to the left of the sweep line.

Array Queue Stack (Page 18) Tree

Question No: 1 (Marks: 1) - Please choose one

Algorithm analysts know for sure about efficient solutions for NP-complete problems. Select correct option:

True False (Page 9)

Quiz No.1 (2012)

Question No: 1 of 10 (Marks: 1) - Please choose one

The number of nodes in a complete binary tree of height h is

$2^{(h+1)} - 1$ (Page 40)

2 * (h+1) - 1 2 * (h+1) $((h+1)^{2}) - 1$

Question No: 1 of 10 (Marks: 1) - Please choose one

The analysis of Selection algorithm shows the total running time is indeed _____in n,

arithmetic geometric **linear** (**Page 37**) orthogonal

Question No: 1 of 10 (Marks: 1) - Please choose one

A (an) ______ is a left-complete binary tree that conforms to the heap order

heap (Page 40)

binary tree binary search tree array

Question No: 1 of 10 (Marks: 1) - Please choose one Analysis of Selection algorithm ends up with,

T(n) (Page 37)

T(1 / 1 + n)T(n / 2)T((n / 2) + n)

Question No: 1 of 10 (Marks: 1) - Please choose one For the sieve technique we solve the problem,

recursively (Page 34)

mathematically precisely accurately

Question No: 1 of 10 (Marks: 1) - Please choose one A heap is a left-complete binary tree that conforms to the _____

increasing order only decreasing order only **heap order (Page 40)** (log n) order

Question No: 1 of 10 (Marks: 1) - Please choose one In which order we can sort?

increasing order only decreasing order only

increasing order or decreasing order (Page 39) both at the same time

$Question \ No: \ 1 \ of \ 10 \ \ (\ Marks: \ 1 \) \ \ - \ Please \ choose \ one$

Divide-and-conquer as breaking the problem into a small number of

pivot Sieve smaller sub problems (Page 34) Selection

Question No: 1 of 10 (Marks: 1) - Please choose one For the heap sort we store the tree nodes in

level-order traversal (Page 40) in-order traversal pre-order traversal post-order traversal

Question No: 1 of 10 (Marks: 1) - Please choose one

The sieve technique works in _____ as follows

Phases (Page 34)

numbers integers routines

CS502 - Fundamentals of Algorithms Quiz No.1 12-11-2012

Question No: 1 of 10 (Marks: 1) - Please choose one We do sorting to,

keep elements in random positions keep the algorithm run in linear order keep the algorithm run in (log n) order **keep elements in increasing or decreasing order**

Question No: 1 of 10 (Marks: 1) - Please choose one

Heaps can be stored in arrays without using any pointers; this is due to the ______ nature of the binary tree,

left-complete(Page 40)

right-complete tree nodes tree leaves

$Question \ No: 1 \ of \ 10 \quad (\ Marks: 1 \) \quad - \ Please \ choose \ one$

Sieve Technique can be applied to selection problem?

True (Page 35)

False

$Question \ No: 1 \ of \ 10 \quad (\ Marks: 1 \) \quad - \ Please \ choose \ one$

In Sieve Technique we do not know which item is of interest

True (Page 34)

False

Question No: 1 of 10 (Marks: 1) - Please choose one

linear arithmetic

geometric (Page 37) exponent

For the heap sort, access to nodes involves simple ______ operations.

arithmetic (Page 41)

binary algebraic logarithmic

Question No: 1 of 10 (Marks: 1) - Please choose one

Slow sorting algorithms run in,

T(n^2) (Page 39)

T(n) T(log n)

Question No: 1 of 10 (Marks: 1) - Please choose one

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as, T(n) = T(n / 2)

 $\log n$ (Page 37) n/2 + n/4

Question No: 1 of 10 (Marks: 1) - Please choose one

The sieve technique is a special case, where the number of sub problems is just

5 many

1 (Page 34) few

Question No: 1 of 10 (Marks: 1) - Please choose one

How many elements do we eliminate in each time for the Analysis of Selection algorithm?

(n / 2) + n elements

```
(n / 2) elements (Page 37)
n / 4 elements
2 n elements
```

Question No: 1 of 10 (Marks: 1) - Please choose one

One of the clever aspects of heaps is that they can be stored in arrays without using any ______ pointers (Page 40)

constants variables functions

How much time merge sort takes for an array of numbers?

T(n²) T(n) T(log n) **T(n log n) (Page 40**)

Question No: 1 of 10 (Marks: 1) - Please choose one

The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of, **divide-and-conquer (Page 34)**

decrease and conquer greedy nature 2dimension Maxima

Question No: 1 of 10 (Marks: 1) - Please choose one

In Sieve Technique we do not know which item is of interest **True (Page 34) rep** False

Question No: 1 of 10 (Marks: 1) - Please choose one

Theta asymptotic notation for T (n) :

```
Set of functions described by: c1g(n)Set of functions described by c1g(n)>=f(n) for c1 s

Theta for T(n)is actually upper and worst case comp (Not sure)

Set of functions described by:

c1g(n)
```

Question No: 1 of 10 (Marks: 1) - Please choose one Memoization is?

To store previous results for future use

To avoid this unnecessary repetitions by writing down the results of recursive calls and looking them up again if we need them later (page 74)

To make the process accurate None of the above

Question No: 1 of 10 (Marks: 1) - Please choose one Which sorting algorithm is faster O (n log n) Page 26 O n^2 O (n+k) O n^3 Stable & in place **Not stable but in place (Page 54)** Stable but not in place Some time stable & some times in place

Question No: 1 of 10 (Marks: 1) - Please choose one One example of in place but not stable algorithm is

Merger Sort **Quick Sort (Page 54)** Continuation Sort Bubble Sort

Question No: 1 of 10 (Marks: 1) - Please choose one

Cont sort is suitable to sort the elements in range 1 to k K is Large K is not known K may be small or large **K is small (Page 57)**

Question No: 1 of 10 (Marks: 1) - Please choose one In place stable sorting algorithm.

If duplicate elements remain in the same relative position after sorting (Page 54)

One array is used More than one arrays are required Duplicating elements not handled

Question No: 1 of 10 (Marks: 1) - Please choose one

Which may be a stable sort? Merger Insertion (Page 54) Both above

Both above None of the above

Question No: 1 of 10 (Marks: 1) - Please choose one An in place sorting algorithm is one that uses _____ arrays for storage

Two dimensional arrays More than one array **No Additional Array (Page 54)** None of the above

Sieve Technique applies to problems where we are interested in finding a single item from a larger set of

n items (Page 34)

phases pointers constant

Question No: 1 of 10 (Marks: 1) - Please choose one

Sorting is one of the few problems where provable _____ bonds exits on how fast we can sort,

upper

lower (Page 39) average log n

Question No: 1 of 10 (Marks: 1) - Please choose one Counting sort has time complexity:

O(n) (Page 58)

O(n+k) O(k) O(nlogn)

Question No: 1 of 10 (Marks: 1) - Please choose one

The running time of quick sort depends heavily on the selection of

No of inputs Arrangement of elements in array Size o elements **Pivot elements (Page 49)**

Question No: 1 of 10 (Marks: 1) - Please choose one Which may be stable sort:

Bubble sort Insertion sort Both of above (Page 54)

One Example of in place but not stable sort is

Quick (Page 54)

Heap Merge Bubble

$Question \ No: 1 \ of \ 10 \ \ (\ Marks: 1 \) \ \ - \ Please \ choose \ one$

In Quick Sort Constants hidden in T(n log n) are

Large Medium Small <u>Click here for detail</u> Not Known

Question No: 1 of 10 (Marks: 1) - Please choose one

Quick sort is based on divide and conquer paradigm; we divide the problem on base of pivot element and:

There is explicit combine process as well to conquer the solution. No work is needed to combine the sub-arrays, the array is already sorted Merging the sub arrays **None of above. (Page 51)**

Ref: - random choices for the pivot element and each choice have an equal probability of 1/n of occurring. So we can modify the above recurrence to compute an average rather than a max

CS501 - Quiz No.2 (Spring 2013)

Question No: 1 of 10 (Marks: 1) - Please choose one

A point p in 2-dimensional space is usually given by its integer coordinate(s)_____

p.x only p.y only p.x & p.z **p.x & p.y** (Page 10)

Question No: 1 of 10 (Marks: 1) - Please choose one

In ______ we have to find rank of an element from given input.

Merge sort algorithm Selection problem (Page 34)

Brute force technique Plane Sweep algorithm

Question No: 1 of 10 (Marks: 1) - Please choose one

In Heap Sort algorithm, if heap property is violated _____

We call Build heap procedure We call Heapify procedure We ignore Heap property can never be violated

Question No: 1 of 10 (Marks: 1) - Please choose one

Upper bound requires that there exist positive constants c2 and n0 such that $f(n) _ c2n$ for all $n \le n0$ (ye question ghalat lag raha hai mujhae

Less than
Equal to or Less than
(Page 25)
Equal or Greater than
Greater than

Question No: 1 of 10 (Marks: 1) - Please choose one A RAM is an idealized algorithm with takes an infinitely large random-access memory.

True **False (Page 10)**

22

Question No: 1 of 10 (Marks: 1) - Please choose one _ is one of the few problems, where provable lower bounds exist on how fast we can sort. Searching Sorting (Page) Both Searching & Sorting Graphing Question No: 1 of 10 (Marks: 1) - Please choose one Floor and ceiling are ______ to calculate while analyzing algorithms. Very easy Usually considered difficult (Page 31) **Question No: 1 of 10 (Marks: 1) - Please choose one** In Heap Sort algorithm, the maximum levels an element can move upward is _____ Theta (log n) (Page 43) Order (log n) Omega (log n) O (1) i.e. Constant time **Ouestion No: 1 of 10 (Marks: 1) - Please choose one** A point p in 2-dimensional space is usually given by its integer coordinate(s)_____ p.x only p.y only p.x & p.z p.x & p.y (Page 17) Question No: 1 of 10 (Marks: 1) - Please choose one In Heap Sort algorithm, the total running time for Heapify procedure is Theta (log n) (Page 43) Order (log n) Omega (log n) O (1) i.e. Constant time Question No: 1 of 10 (Marks: 1) - Please choose one Algorithm is a mathematical entity, which is independent of a specific machine and operating system. True (Page 7) False

Question No: 1 of 10 (Marks: 1) - Please choose one While Sorting, the ordered domain means for any two input elements x and y	satisfies only.
$ \begin{array}{l} x < y \\ x > y \\ x = y \\ \mbox{All of the above} (Page 39) \end{array} $	
Question No: 1 of 10 (Marks: 1) - Please choose one Quick sort is best from the perspective of Locality of reference.	
True (Page 9) False	
Question No: 1 of 10 (Marks: 1) - Please choose one Sorting can be in	
Increasing order only Decreasing order only Both Increasing and Decreasing order (Page 39) Random order	
Question No: 1 of 10 (Marks: 1) - Please choose one In Heap Sort algorithm, we build for ascending sort.	
Max heap (Page 41) Min heap	
Question No: 1 of 10 (Marks: 1) - Please choose one In Sieve Technique, we know the item of interest.	
True False (Page 34)	
Question No: 1 of 10 (Marks: 1) - Please choose one While solving Selection problem, in Sieve technique we partition input data	
In increasing order In decreasing order According to Pivot (Page 35) Randomly	
	24

Question No: 1 of 10 (Marks: 1) - Please choose one In pseudo code, the level of details depends on intended audience of the algorithm.
True (Page 12) False
Question No: 1 of 10 (Marks: 1) - Please choose one The sieve technique works where we have to find item(s) from a large input.
Single (Page 34) Two Three Similar
Question No: 1 of 10 (Marks: 1) - Please choose one If the indices passed to merge sort algorithm are, then this means that there is only one element to sort.
Small Large Equal (Page 28) Not Equal
(Marks: 1) - Please choose one 1.Random access machine or RAM is a/an Machines build by Al-Khwarizmi Mechanical machine Electronics machine Mathematical model (lec#2 pg#10)
 2 is a graphical representation of an algorithm Σ notation Θ notation Flowchart(refrence cls10 chapter no1) Asymptotic notation
3. A RAM is an idealized machine with random-access memory. 256MB 512MB an infinitely large (page#10) 100GB
4. What type of instructions Random Access Machine (RAM) can execute? Choose best Algebraic and logic Geometric and arithmetic Arithmetic and logic(page#10) Parallel and recursive

5. What will be the total number of max comparisons if we run brute-force maxima algorithm with n elements. $*n^2$

 $n^{\frac{n}{2}}$ *n
*n **Answe is option 3**

6. What is the solution to the recurrence T(n) = T(n/2)+n. O(logn) (not sure) O(n)

Solved By Rabia Rauf

O(nlogn)

```
O(n^2)
7. Consider the following code:
For(j=1; j<n;j++)</pre>
For(k=1; k<15;k++)
For(l=5; l<n; l++)
{
Do_something_constant();
}
What is the order of execution for this code.
O(n)
O(n^3)
O(n^2 \log
n) O(n^2)
8. Consider the following Algorithm:
Factorial (n){
if (n=1)
```

```
return 1
else
return (n * Factorial(n-1))
```

Recurrence for the following algorithm is: T(n) = T(n-1) + 1 T(n) = nT(n-1) + 1 T(n)=T(n-1) + nT(n)=T(n(n-1)) + 1 (lec#9)

9. What is the total time to heapify? (Olog n) (page#43) (n log n) ($n^2 \log n$) ($\log^2 n$)

10.When we call heapify then at each level the comparison performed takes time **It will take (1)**

Time will vary according to the nature of input data It can not be predicted It will take (log n)

11.In Quick sort, we don't have the control over the sizes of recursive calls **True(page#49)**

False Less information to decide Either true or false

12.Is it possible to sort without making comparisons? Yes (pge#57)
No
Question No: 13 (Marks: 1) - Please choose one
If there are n^2 entries in edit distance matrix then the total running
(1)
(n^2) (pg#84)
(n)
$(n \log n)$

14. For Chain Matrix Multiplication we can not use divide and conquer approach because, We do not know the optimum k (pg#86)

We use divide and conquer for sorting only We can easily perform it in linear time Size of data is not given

15.The Knapsack problem belongs to the domain of ______ problems. Optimization (pg#91)

Optimization NP Complete Linear Solution Sorting

16.Suppose we have three items as shown in the following table, and suppose the capacity of the knapsack is 50 i.e. W = 50.

The optimal solution is to pick

item	value	weight
1	60	10
2	100	20
3	120	30

Items 1 and 2 Items 1 and 3 Items 2 and 3 None of these

17 - What type of instructions Random Access Machine (RAM) can execute? Choose best answer

(rep)

4. Algebraic and logic

5. Geometric and arithmetic

3.Arithmetic and logic

4. Parallel and recursive

Correct Choice : 3 From Lectuer #1

18 - Random access machine or RAM is a/an

- 5. Machine build by Al-Khwarizmi
- 6. Mechanical machine
- 7. Electronics machine

4. Mathematical model (rep) **Correct Choice : 4 From Lectuer #1 19**- _____ is a graphical representation of an algorithm 5. Segma Notation 6. Thita Notation 3. Flowchart (rep) 4. Asymptotic notation **Correct Choice : 3 From Lectuer # 2 20** - What will be the total number of max comparisons if we run brute-force maxima? algorithm with n elements? 5. n^2 6. n^n/2 7. n 8. n^8 **Correct Choice : 1 From Lectuer # 3** 21 - function is given like $4n^{4+} 5n^{3+n}$ what is the run time of this 5. theata(n^4) 6. theata (n^3) 7. theata $(4n^{4} + 5n^{3})$ 8. theata $(4n^{4} + 5n^{3})$ **Correct Choice : 1 From Lectuer #4** 22 - Let us say we have an algorithm that carries out N2 operations for an input of size N. Let us say that a computer takes 1 microsecond (1/1000000 second) to carry out one operation. How long does the algorithm run for an input of size 3000? 5.90 seconds 6.9 seconds 7.0.9 seconds 8. 0.09 seconds **Correct Choice : 2 From Lectuer #4 23** - The appropriate big θ classification of the given function. $f(n) = 4n^2 + 97n + 1000$ is 4. ?(n) 5. O(2^n) 6. O(n^2) 7. $O(n^2 \log n)$ **Correct Choice : 3 From Lectuer #4** 24 - Which sorting algorithm is faster 5. O (n log n) 6. O n^2 7. O (n) (pg#26) 8. O n^3 **Correct Choice : 3 From Lectuer # 5**

25 - If algorithm A has running time $7n^2 + 2n + 3$ and algorithm B has running time $2n^2$, then 1. Both have same asymptotic time complexity 6. A is asymptotically greater 7. B is asymptotically greater 8. None of others **Correct Choice : 1 From Lectuer # 6 26** - What is the solution to the recurrence T(n) = T(n/2) + n. **1. O(logn)** 5. O(n) 6. O(nlogn) 7. O(n^2) **Correct Choice : 1 From Lectuer # 8** 27- - How much time merge sort takes for an array of numbers? 1. (n^2) 2. T(n) 7. T(log n) 8. T(n log n) **Correct Choice : 2 From Lectuer # 8 28** - Consider the following Algorithm: Factorial (n) if (n=1) return 1 else return (n * Factorial(n-1)) } Recurrence for the following algorithm is: 4. T(n) = T(n-1) + 15. T(n) = nT(n-1) + 16. T(n) = T(n-1) + n7. T(n)=T(n(n-1)) + 1**Correct Choice : 4 From Lectuer #9** 29 - For the Sieve Technique we take time 1. T(nk). (pg#34) 6. T(n / 3)7. n^2 8. n/3**Correct Choice: 1 From Lectuer # 10** 30 - Sieve Technique applies to problems where we are interested in finding a single item from a larger set of 1. n items (pg#34) 2. phases

5. pointers
6. constant
Correct Choice : 1 From Lectuer # 10
21 In Sieve Technique we do not know which item is of interest
2 EALSE
J. FALSE
4. INOL(pg#34) Connect Choice : 2 From Lacturer # 10
Correct Choice : 2 From Lectuer # 10
32 - For the sieve technique we solve the problem
1. recursively (pg#34)
5. mathematically
6. accurately
7. precisely
Correct Choice : 1 From Lectuer # 10
33 - For the Sieve Technique we take time
4. Tθ(nk) (pg#34)
5. T(n / 3)
6. n^2
7. n/3
Correct Choice : 1 From Lectuer # 10
24 How many elements do we eliminate in each time for the Analysis of Selection
algorithm?
5 n / 2 elements
6 (n/2) + n elements
7 $n/4$ elements
8 n elements
Correct Choice : 4 From Lectuer # 10
35 - Sieve Technique applies to problems where we are interested in finding a single
item from a larger set of
1. n items
2. phases
3. pointers
4. constant
Correct Choice : 1 From Lectuer # 10
36 - The analysis of Selection algorithm shows the total running time is indeedin
n,
1. arithmetic
5. linear (pg#5/)
4. orthogonal
Correct Unoice : 5 From Lectuer # 10

37- The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of, 1. divide-and-conquer (pg#34) 2. decrease and conquer 3. greedy nature 4. 2-dimension Maxima **Correct Choice : 1 From Lectuer # 10 38** - The sieve technique works in _____ as follows 1. phases (pg#34) 2. numbers 3. integers 4. routines **Correct Choice : 1 From Lectuer # 10 39** - A (an) ______ is a left-complete binary tree that conforms to the heap order 1. heap (pg#40) 2. binary tree 3. binary search tree . array **Correct Choice : 1 From Lectuer # 11 40** - For the heap sort, access to nodes involves simple operations. 1. arithmetic (pg#41) 2. binary 3. algebraic 4. logarithmic **Correct Choice : 1 From Lectuer # 11** 41 - We do sorting to, 1. keep elements in random positions 2. keep the algorithm run in linear order 3. keep the algorithm run in (log n) order 4. keep elements in increasing or decreasing order **(pg#39) Correct Choice : 1 From Lectuer # 11** 42 - For the heap sort we store the tree nodes in **1. level-order traversal (pg#40)** 2. in-order traversal 3. pre-order traversal 4. post-order traversal **Correct Choice : 1 From Lectuer # 11** 43 - In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as, 1. T(n) 2. T(n/2)

(pg#37)3. **log n** 4. n/2 + n/4**Correct Choice : 3 From Lectuer # 11** 44 - In which order we can sort? 1. increasing order only 2. decreasing order only 3. increasing order or decreasing order (pg#39) 4. both at the same time **Correct Choice : 3 From Lectuer #11** 46 - One of the clever aspects of heaps is that they can be stored in arrays without using any ___ (pg#40) 1. pointers 2. constants 3. variables 4. functions **Correct Choice : 1 From Lectuer #1** 47 - Slow sorting algorithms run in, 1. O(n^2) (pg#39) 2. O(n) 3. O(log n) 4. $O(n \log n)$ 48- What is the total time to heapify? 1. ?(log n) (pg#43) 2. ?(n log n) 3. ?(n^2 log n) 4. ?(log^2n) **Correct Choice : 1 From Lectuer # 12** 49 - When we call heapify then at each level the comparison performed takes time It will take O (1) 1. Time will vary according to the nature of input data 2. It can not be predicted 3. It will take O (log n) 4. None of the Given **Correct Choice : 3 From Lecture # 12** 50 - After partitioning array in Quick sort, pivot is placed in a position such that 1. Values smaller than pivot are on left and larger than pivot are on right (2. Values larger than pivot are on left and smaller than pivot are on right 3. Pivot is the first element of array 4. Pivot is the last element of array **Correct Choice : 2 From Lectuer #13** 51 - The running time of quick sort depends heavily on the selection of 1. No of inputs

2 Arrangement of elements in array
3 Size o elements
4 Pivot element (ng#49)
Correct Choice : 4 From Lectuer # 13
52- In Quick Sort Constants hidden in T(n log n) are
1. Large
2. Medium
3. Small
4. Not Known
Correct Choice : 3 From Lectuer # 14
55 - Is it possible to sort without making comparisons?
1. Yes (pg#57) 2. No
2. NO Correct Choice : 1 From Lactuer # 15
Correct Choice . 1 From Lectuer # 15
54 - Merge sort is stable sort, but not an in-place algorithm
1. TRUE (pg#54)
2. FALSE
Correct Choice : 1 From Lectuer # 15
55 - In counting sort, once we know the ranks, we simply numbers to their final positions in an
output array.
1Delete
2 сору
3 Mark
4 arrange
Correct Choice : 2 From Lectuer # 15
56 - An in place sorting algorithm is one that uses arrays for storage
1. Two dimensional arrays
2. More than one array
5. No Additional Array (pg#54)
4. None of the above Connect Choice + 3 From Lastwor # 15
2
2. 57 - Continuation/counting sort is suitable to sort the elements in range 1 to k
1 K is Large
2. K is not known
3. K may be small or large
4. K is small (ng#57)
Correct Choice : 4 From Lectuer # 15
3.
58 - In stable sorting algorithm.
1. If duplicate elements remain in the same relative position after sorting
2. One array is used
3. More than one arrays are required

4. Duplicating elements not handled **Correct Choice : 1 From Lectuer # 15** 4. 59 - One example of in place but not stable algorithm is 1. Merger Sort 2. Quick Sort 3. Continuation Sort 4. Bubble Sort **Correct Choice : 2 From Lecture #15** 5. 60 - One example of in place but not stable algorithm is 1. Merger Sort 2. Quick Sort (pg#54) 3. Continuation Sort 4. Bubble Sort **Correct Choice : 2 From Lecture # 15**

61- One of the clever aspects of heaps is that they can be stored in arrays without using any ______.

1. pointers (rep)

- 2. constants
- 3. variables

. functions

Correct Choice : 1 From Lecture # 15

62 - Quick sort is

1. Stable & in place

- 2. Not stable but in place (pg#54)
- 3. Stable but not in place
- 4. Some time stable & some times in place

63 - Quick sort is

1. Stable & in place

- 2. Not stable but in place (rep)
- 3. Stable but not in place

4. Some time stable & some times in place

Correct Choice : 2 From Lectuer # 15

64 - Which may be a stable sort?

1. Merger

2. Insertion

3.Both above (pg#54)

4. None of the above

Correct Choice : 3 From Lectuer # 15

67 - Which of the following sorting algorithms is stable?

(i) Merge sort,

(ii) Quick sort,

(iii) Heap sort, (iv) Counting Sort. 1. Only i 2. Only ii 3. Both i and ii 4. Both iii and iv **Correct Choice : 1 From Lectuer # 15** 68 Mergesort is a stable algorithm but not an in-place algorithm. 1. TRUE (pg#54) 2. FALSE **Correct Choice : 1 From Lectuer # 16 69** - Memorization is? 1. To store previous results for future use 2. To avoid this unnecessary repetitions by writing down the results of recursive calls and looking them up again if we need them later (pg#74) 3. To make the process accurate 4. None of the above **Correct Choice : 2 From Lectuer # 16** 70 - Dynamic programming algorithms need to store the results of intermediate sub-problems. 1. TRUE (pg#75) 2. FALSE **Correct Choice : 1 From Lectuer # 17** 71 - Dynamic programming uses a top-down approach. 1. TRUE 2. FALSE **Correct Choice : 2 From Lectuer # 17** 73- The edit distance between FOOD and MONEY is 1. At most four (pg#76) 2. At least four 3. Exact four 4. Wrong **Correct Choice : 1 From Lectuer # 17** 74- The edit distance between FOOD and MONEY is 1. At most four 2. At least four 3. Exact four 4. Wrong **Correct Choice : 1 From Lectuer #17** 75 - If there are O (n^2) entries in edit distance matrix then the total running time is

1. O (1)
2. O (n^2) (rep) 3. O (n) 4. O (n log n) **Correct Choice : 2 From Lectuer # 18** 76 - A p x q matrix A can be multiplied with a q x r matrix B. The result will be a p x r matrix C. There are (p. r) total entries in C and each takes ______ to compute. 1. O (q) (pg#84) 2.0(1)3. O (n^2) 4. O (n^3) **Correct Choice : 1 From Lectuer # 19** 77 - For Chain Matrix Multiplication we can not use divide and conquer approach because, 1. We do not know the optimum k (rep) 2. We use divide and conquer for sorting only 3. We can easily perform it in linear time 4. Size of data is not given **Correct Choice : 1 From Lectuer # 19** 78 - A p x q matrix A can be multiplied with a q x r matrix B. The result will be a p x r matrix C. There are (p. r) total entries in C and each takes ______ to compute. **1. O** (**a**) (**rep**) 2. O(1) 3. O (n^2) 4. O (n^3) **Correct Choice : 1 From Lectuer # 19 79** - The Knapsack problem belongs to the domain of _____ problems. 1. Optimization rep 2. NP Complete 3. Linear Solution 4. Sorting **Correct Choice : 1 From Lectuer # 21** 80 The codeword assigned to characters by the Huffman algorithm have the property that no codeword is the postfix of any other. 1. TRUE 2. FALSE **Correct Choice : 2 From Lectuer # 22** 81 - The greedy part of the Huffman encoding algorithm is to first find two nodes with larger frequency. 1. TRUE 2. FALSE **Correct Choice : 2 From Lectuer # 22**

λ - An ophimization proplem is one in which you want to tind	
1 Not a solution	
2 An algorithm	
3 Good solution	
4. The best solution	
4. The dest solution Connect Choice : 4 From Lastner # 22	
Correct Choice : 4 From Lectuer # 22	
83- We do sorting to,	
keep elements in random positions	
keep the algorithm run in linear order	
keep the algorithm run in (log n) order	
keep elements in increasing or decreasing order (rep)	
84-Heaps can be stored in arrays without using any pointers; this is due to the nature of the binary tree,	
left-complete	
right-complete	
tree nodes tree	
leaves	
85- Sieve Technique can be applied to selection problem? True (pg#35) False	
86-A heap is a left-complete binary tree that conforms to the	
increasing order only	
decreasing order only	
heap order (pg40)	
(log n) order	
87- A (an) is a left-complete binary tree that conforms to the heap order heap (pg#40)	
binary tree binary	
search tree array	
88- Divide-and-conquer as breaking the problem into a small number of Select correct option:	
pivot Sieve	
smaller sub problems (pg27) Selection	
89- In Sieve Technique we do not know which item is of interest Select correct option:	
True (rep) False	

90- The recurrence relation of Tower of Hanoi is given below T(n)={1 if n=1 and 2T(n-1) if n >1 In orde	er
to move a tower of 5 rings from one peg to another, how many ring moves are required?	
Select correct option:	

16 10 32 31 (not sure)

91- In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent ______ series in the analysis, Select correct option:

linear arithmetic

geometric (pg37) exponent

92- In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent ______ series in the analysis, Select correct option:

linear arithmetic geometric (rep) exponent

93-In inplace sorting algorithm is one that uses array for storage :

- 1. An additional array
- 2. No additional array (rep)
- 3. Both of the above
- 4. More then one array of one dimension.

94-The running time of quick sort depends heavily on the selection of.

- 1. No of inputs
- 2. Arrangement of element in array
- 3.Size Of element
- 4. **Pivot element** rep

95-For the sieve technique we solve the problem.

Recursively rep mathematically precisely

accurately

96-The sieve technique works in _____ as follows
Phases rep

numbers	
integers	
routines	
97-Slow sorting a	algorithms run in.
T(n^2) rep	
T(n)	
$T(\log n)$	
98-A (an)	is a left-complete binary tree that conforms to the heap order
Heap rep binary	
tree binary search	
tree array	
99-In the analysi we get the conve	s of Selection algorithm, we eliminate a constant fraction of the array with each phase; gent series in the analysis,
linear arithmetic	
geometric rep exponent	
100-In the analys	is of Selection algorithm, we make a number of passes, in fact it could be as many as
T(n) T(n / 2)	
log n (pg#37) n / 2 + n / 4	
101-In which ord	ler we can sort?
Select correct opt	ion:
increasing order of	only
decreasing order of	only
increasing order both at the same the	or decreasing order (rep) ime
102-The recurrent to move a tower 16 10	nce relation of Tower of Hanoi is given below T(n)={1 if n=1 and 2T(n-1) if n >1 In order of 5 rings from one peg to another, how many ring moves are required?
32	
31	
103-Analysis of S	selection algorithm ends un with
$\theta(n)$ rep	
T(1 / 1 + n)	
T(n/2)	
T((n/2) + n)	
·····	

104-Memorization is? 1. To store previous results for future use 2. To avoid this unnecessary repetitions by writing down the results of recursive calls and looking them up again if we need them later (rep) 3. To make the process accurate 4. None of the above 105-Which sorting algorithm is faster 1. $O(n \log n)$ 2. O n^2 **3. O** (**n**) rep 4. O n^3 **106-Quick sort is** 1. Stable & in place 2. Not stable but in place (rep) 3. Stable but not in place 4. Some time stable & some times in place 107-One example of in place but not stable algorithm is 1. Merger Sort 2. Quick Sort rep 3. Continuation Sort 4. Bubble Sort **108-In Quick Sort Constants hidden in T(n log n) are** 1. Large 2. Medium 3. Small rep 4. Not Known 109-Counting sort is suitable to sort the elements in range 1 to k 1. K is Large 2. K is not known 3. K may be small or large 4. K is small rep **110-In stable sorting algorithm.** 1. If duplicate elements remain in the same relative position after sorting rep 2. One array is used 3. More than one arrays are required 4. Duplicating elements not handled 111-Which may be a stable sort? 1. Merger

- 2. Insertion
- 3.Both above rep
- 4. None of the above

112-An in place sorting algorithm is one that uses arrays for storage 1. Two dimensional arrays 2. More than one array 3.No Additional Array rep 4.None of the above
113-Counting sort has time complexity of ? 1. O(n) 2. O(n+k) 3. O(nlogn) 4. O(k)
114-We do sorting to,keep elements in random positionskeep the algorithm run in linear orderkeep the algorithm run in (log n) orderkeep elements in increasing or decreasing orderrep
115-Divide-and-conquer as breaking the problem into a small number of pivot Sieve smaller sub problems rep Selection
116-The analysis of Selection algorithm shows the total running time is indeed in n, arithmetic geometric linear pg#37 orthogonal
117-How many elements do we eliminate in each time for the Analysis of Selection algorithm? n / 2 elements (pg#37) (n / 2) + n elements n / 4 elements 2 n elements
118-Sieve Technique can be applied to selection problem?TruerepFALSE
119- For the heap sort we store the tree nodes in level-order traversal rep in-order traversal pre-order traversal post-order traverse
120-In RAM model instructions are executed

One after another pg#10 Parallel

Concurrent Random

121-In selection algorithm, because eliminate a constant fraction of the array with each phase, we get the

Convergent geometric series rep Divergent geometric series None

of these

122-Due to left-complete nature of binary tree, heaps can be stored in

Link list Structure Array None of above

123-If algorithm A has running time 7n2 + 2n + 3 and algorithm B has running time 2n2, then

Both have same asymptotic time complexity rep A is

asymptotically greater B is asymptotically greater None of others

124-Which of the following sorting algorithms is stable?

(i) Merge sort,
(ii) Quick sort,
(iii) Heap sort,
(iv) Counting Sort.
Only i
Only ii
Both i and ii
Both iii and iv

125-Execution of the following code fragment

int Idx; for (Idx = 0; Idx < N; Idx++) { cout << A[Idx] << endl; } is best described as being O(N) O(N2) O(log N) O(N log N)

126-The edit distance between FOOD and MONEY is

At most four	rep
At least four	

Exact four
127-Consider the following recurrence relation Then T(5) is 25 75 79
128-How much time merger sort takes for an array of numbers? $T(n^2)$
T(n) (pg#29) T(log n) T(n log n)
129-Divide-and-Conquer is as breaking the problem into a small number of Smaller Sub Problems rep Pivot
Solutions.
130-The Sieve Sequence is a special case where the number of smaller subproblems is just 4 Many
I Few
131-How many elements do we eliminate each time for the Analysis of Selection Algorithm?
(n / 2)+n Elements n / 2 Elements
2 n Elements 132-We do sorting to?
Keep elements in random position Keep the algorithm run in linear order
Keep Elements in Ascending or Descending Order rep Keep the algorithm run in (log n) order
133-Sorting is one of the few problems where provable bounds exit on how fast we can sort? Upper
Average Log n
Lower rep

134-In the analysis of Selction Algorithm, we eliminate the constant fraction of the array with each phase, we get convergent _____ series in the analysis.

Geometric rep
Linear
Arithmetic
None of above
135-For the Sieve technique we take time?
T $(n/3)$
\mathbf{T} (n k)
N^2
n/3
126 For the giave technique we calve the problem
Recursively
Devide value
Kandonny Methematically
Provisely
riccisely
127 The manual effect of Termin efficiency is $T(x) = 1$ if $x = 1$ and $2T(x, 1)$
157-The recurrence relation of Tower of Hanol IS $T(n) = T n = T and 2T(n-1)$ if $n > 1$. In order to move a tower of 5 rings from one pag to enother how many
ring moves are required?
16
22 (Not Confirm)
138-An optimization problem is one in which you want to find,
► Not a solution
An algorithm
► Good solution
The best solution rep
139-Search technique is used to find the
► Maximum two solutions
► Minimum two solutions
► Sorting solution
140-What type of instructions Random access machine can execute?
Geometric and arithmetic
Algebraic and logic
Arithmetic and logic rep
Parallel and recursive
141-Due to left complete nature of binary tree, the heap can be stored in
• Arrays rep
• Structures
Link Lis
• Stack

142-What type of instructions Random Access Machine (RAM) can execute?
Algebraic and logic
Geometric and arithmetic
Arithmetic and logic rep
Parallel and recursive
143-For Chain Matrix Multiplication we can not use divide and conquer approach because,
We do not know the optimum k
We use divide and conquer for sorting only rep
We can easily perform it in linear time
Size of data is not given
144-We do sorting to,
Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in (log n) order
<mark>keep elements in increasing or decreasing order</mark> rep
145-Heaps can be stored in arrays without using any pointers; this is due to the nature of the binary tree, left-complete Page 40 right-complete right-complete tree nodes tree leaves
146-Sieve Technique can be applied to selection problem?
True Page 35
False
147-A heap is a left-complete binary tree that conforms to the
increasing order only
decreasing order only
heap order Page 40
(log n) order
148-A (an) is a left-complete binary tree that conforms to the heap order
Heap Page 40
binary tree
binary search tree
array
149-Divide-and-conquer as breaking the problem into a small number of
NAVA

smaller sub problems Page 34
Selection
150-In Sieve Technique we do not know which item is of interest
True Page 34
False
151. The recurrence relation of Tower of Hanoi is given below $T(n) = \{1 \text{ if } n = 1 \text{ and } 2T(n-1) \text{ if } n > 1 \text{ In order} \}$
to move a tower of 5 rings from one neg to another how many ring moves are required?
16
10
32
31
152-In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase;
we get the convergent series in the analysis,
linear
arithmetic
geometric Page 37
exponent
153-For the heap sort, access to nodes involves simple operations.:
Arithmetic Page 41
binary
algebraic
logarithmic
154-For the sieve technique we solve the problem,
Recursively Page 34
mathematically
precisely
accurately
155-The sieve technique works in as follows
Phases Page 34
numbers
integers
routines
156-Slow sorting algorithms run in
$\Omega(n^2)$ Page 30
$T(n^2)$
T(n 2) T(n)
$T(\log n)$
15/-A (an) is a lett-complete binary tree that conforms to the heap order
<u>neap</u>
binary tree binary
search tree array

158-In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent series in the analysis, linear arithmetic geometric exponent
159-In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as, $T(n)$ $T(n/2)$ log n Page 37 $n/2 + n/4$ 160- The sieve technique is a special case, where the number of sub problems is just 5 many 1 Page 34 few
161-In which order we can sort?increasing order onlydecreasing order onlyincreasing order or decreasing orderboth at the same time
162-The recurrence relation of Tower of Hanoi is given below T(n)={1 if n=1 and 2T(n-1) if n >1 In order to move a tower of 5 rings from one peg to another, how many ring moves are required? 16 10 32 31
163-Analysis of Selection algorithm ends up with,(n) $pg#37$ $T(1 / 1 + n)$ $T(n / 2)$ $T(n / 2)$ $T((n / 2) + n)$
164-We do sorting to,keep elements in random positionskeep the algorithm run in linear orderkeep the algorithm run in (log n) orderkeep elements in increasing or decreasing orderrep
165-Divide-and-conquer as breaking the problem into a small number of pivot Sieve smaller sub problems rep

Selection
166-The analysis of Selection algorithm shows the total running time is indeedin n,
Arithmetic
geometric
linear Page 37
orthogonal
167-How many elements do we eliminate in each time for the Analysis of Selection algorithm?
$\frac{107-110}{100}$ many elements do we eliminate in each time for the Analysis of Selection algorithm.
$\frac{11}{2}$ elements rep
$(\Pi/2) + \Pi$ elements
2 n elements
168-Sieve Technique can be applied to selection problem?
<u>True</u>
False
169-For the heap sort we store the tree nodes in
level-order traversal Page 40
in-order traversal
pre-order traversal
post-order traversal
170 One of the elever concerts of boons is that they can be stared in arrays without using
170-One of the clever aspects of heaps is that they can be stored in arrays without using
any
<u>pointers</u> rep
constants
variables
functions
171-For the heap sort we store the tree nodes in
<u>level-order traversal rep</u>
in-order traversal
pre-order traversal
post-order traversal
-
172 The sieve technique works in as follows
Phases Page 34
numbers
integers
routines
Toutilles
1/3- In the analysis of Selection algorithm, we eliminate a constant fraction of the array with
each phase; we get the convergent series in the analysis,
linear
arithmetic
<mark>geometric</mark> rep
exponent

174 We do sorting to,
keep elements in random positions
keep the algorithm run in (log n) order
keep the algorithm run m (log n) order keep elements in increasing or decreasing order
Reep cientents in increasing of decreasing of der
175 In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
T(n)
T(n/2)
log n rep
n / 2 + n / 4
176 In which order we can sort?
increasing order only
decreasing order only
increasing order or decreasing order rep both at the same
time
1// In Sieve Technique we do not know which item is of interest
False
178 For the sieve technique we solve the problem,
<u>recursively</u>
mathematically
precisely
179- Divide-and-conquer as breaking the problem into a small number of
pivot
Sieve
smaller sub problems
Selection
180-Divide-and-Conquer is as breaking the problem into a small number of
· Smaller Sub Problems
· Pivot
·Sieve
·Solutions
181-Analysis of Selection Sort ends up with
T(n) Page 37
T(1/1+n)
$\cdot T(n/2)$
$\cdot T((n/2) + n)$
182-How many elements do we eliminate each time for the Analysis of Selection Algorithm?
\cdot (n / 2)+n Elements
· n / 2 Elements
\cdot n / 4 Elements

$\cdot 2$ n Elements

183-A *heap* is a left-complete binary tree that conforms to the ?

- Increasing Order
- · Decreasing order

• <u>Heap Order</u>

 \cdot (nlog n) order

184-The Sieve Sequence is a special case where the number of smaller sub problems is just_.. 4

- Many
- •<u>1</u>

· Few

185-Heaps can be stored in arrays without using any pointers this is due to the of the binary tree? • Tree Nodes

· Right-Complete Nature

· Left-Complete Nature

· Tree Leaves

186-For the Heap Sort access to nodes involves simple _ operations:

- · Geometric
- · Linear

<u>Arithmetic</u>

· Algebraic

187-The Analysis of Selection Sort shows that the total running time is indeed in n?

- · Geometric
- · <mark>Linear</mark>
- · Arithmetic
- · Algebraic

188-For the sieve technique we solve the problem

- <u>Recursively</u>
- · Randomly
- · Mathematically
- · Precisely

189-How much time merger sort takes for an array of numbers?

- T(n^2) • T(n)
 - Page 30
- $\cdot T(\log n)$
- $\cdot T(n \log n)$

190-Divide-and-Conquer is as breaking the problem into a small number of a Smaller Sub Problems rep

of · Smaller Sub Problems rep

- Pivot
- · Sieve
- · Solutions

191-Analysis of Selection Sort ends up with

- (n) rep
- \cdot T(1/1+n)
- $\cdot T(n/2)$
- \cdot T((n/2) +n)

192-How many elements do we eliminate each time for the Analysis of Selection Algorithm? \cdot (n / 2)+n Elements

- \cdot n / 2 Elements
- \cdot n / 4 Elements
- $\cdot 2$ n Elements
- $\cdot 2$ n Elements

193-A heap is a left-complete binary tree that conforms to the ?

- \cdot Increasing Order
- $\cdot \, \text{Decreasing order}$
- · Heap Order
- $\cdot \, (nlog \; n) \; order$

194-The Sieve Sequence is a special case where the number of small er sub problems is just_ .

- •4
- · Many
- · 1
- $\cdot \, Few$

195-Heaps can be stored in array s without using any pointers this is due to the of the binary tree? • Tree Nodes

- · Right-Complete Nature
- · Left-Complete Nature
- · Tree Leaves

196-For the Heap Sort access to nodes involves simple _ operations:

- \cdot Geometric
- · Linear
- Arithmetic rep
- \cdot Algebraic

The Analysis of Selection Sort shows that the total running time is indeed in n? \cdot Geometric

- Linear pg#37
- \cdot Arithmetic
- · Algebraic
- rigeoraie

For the sieve technique we solve the problem

rep

- Recursively
- \cdot Randomly
- · Mathematically
- \cdot Precisely

How much time merger sort takes for an array of numbers? \cdot T(n^2) $\begin{array}{l} \cdot \mathbf{T(n)} \\ \cdot \mathbf{T(\log n)} \\ \cdot \mathbf{T(n \log n)} \end{array}$

1. Question # 1 of 10 (Start time: 06:18:58 PM) Total Marks: 1

We do sorting to, Select correct option: keep elements in random positions keep the algorithm run in linear order keep the algorithm run in (log n) order **keep elements in increasing or decreasing order** Page 39

2. Question # 2 of 10 (Start time: 06:19:38 PM) Total Marks: 1

Heaps can be stored in arrays without using any pointers; this is due to the ______ nature of the binary tree,

Select correct option: left-complete

Page 40

right-complete tree nodes tree leaves

3. Question # 3 of 10 (Start time: 06:20:18 PM) Total Marks: 1

Sieve Technique can be applied to selection problem? Select correct option:

True Page 35 False

4. Question # 4 of 10 (Start time: 06:21:10 PM) Total Marks: 1

A heap is a left-complete binary tree that conforms to the______ Select correct option: increasing order only decreasing order only heap order Page 40 (log n) order

5. Question # 5 of 10 (Start time: 06:21:39 PM) Total Marks: 1 A (an) ______ is a left-complete binary tree that conforms to the heap order Select correct option:

Heap Page 40 binary tree binary search tree array 6. Question # 6 of 10 (Start time: 06:22:04 PM) Total Marks: 1

Divide-and-conquer as breaking the problem into a small number of Select correct option: pivot Sieve smaller sub problems Page 34 Selection

7. Question # 7 of 10 (Start time: 06:22:40 PM) Total Marks: 1

In Sieve Technique we do not know which item is of interest Select correct option:

True	Page 34	
False		

8. Question # 8 of 10 (Start time: 06:23:26 PM) Total Marks: 1

The recurrence relation of Tower of Hanoi is given below $T(n)=\{1 \text{ if } n=1 \text{ and } 2T(n-1) \text{ if } n > 1 \text{ In order to} move a tower of 5 rings from one peg to another, how many ring moves are required? Select correct option:$

16

10

32

31

9. Question # 9 of 10 (Start time: 06:24:44 PM) Total Marks: 1

In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent _______ series in the analysis, Select correct option:

linear arithmetic geometric Page 37

exponent

10. Question # 10 of 10 (Start time: 06:25:43 PM) Total Marks: 1

For the heap sort, access to nodes involves simple ______ operations. Select correct option: Arithmetic Page 41 binary algebraic logarithmic For the sieve technique we solve the problem, Select correct option: **Recursively** Page 34 mathematically precisely accurately The sieve technique works in _____ as follows 12. Select correct option: **Phases** Page 34 numbers integers routines 13. Slow sorting algorithms run in, Select correct option: $\Theta(n^2)$ Page 39 $\overline{T(n^2)}$ T(n) $T(\log n)$ 14. A (an) ______ is a left-complete binary tree that conforms to the heap order Select correct option: **heap** binary tree binary search tree array 15. In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent ______ series in the analysis, Select correct option: linear arithmetic geometric exponent 16. In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,

Select correct option: T(n)

T(n / 2)log nn / 2 + n / 4
 Page 37

17. The sieve technique is a special case, where the number of sub problems is just Select correct option:

5 many <mark>1</mark> few Page 34 18. In which order we can sort? Select correct option: increasing order only decreasing order only increasing order or decreasing order Page 39

both at the same time

19. The recurrence relation of Tower of Hanoi is given below $T(n) = \{1 \text{ if } n=1 \text{ and } 2T(n-1) \text{ if } n > 1 \text{ In } \}$ order to move a tower of 5 rings from one peg to another, how many ring moves are required? Select correct option:

16

10

32

31

20. Analysis of Selection algorithm ends up with,

Select correct option: T(n) T(1 / 1 + n)

T(n / 2)T((n / 2) + n)

21. We do sorting to, Select correct option: keep elements in random positions keep the algorithm run in linear order keep the algorithm run in (log n) order keep elements in increasing or decreasing order

22. Divide-and-conquer as breaking the problem into a small number of Select correct option: pivot Sieve smaller sub problems Selection

23. The analysis of Selection algorithm shows the total running time is indeed ______in n, Select correct option:
arithmetic
geometric
linear Page 37

orthogonal

24. How many elements do we eliminate in each time for the Analysis of Selection algorithm? Select correct option:

n / 2 elements

(n / 2) + n elements n / 4 elements 2 n elements

25. Sieve Technique can be applied to selection problem? Select correct option:

True

False

26. For the heap sort we store the tree nodes in Select correct option:

level-order traversal Page 40

in-order traversal pre-order traversal post-order traversal

27. One of the clever aspects of heaps is that they can be stored in arrays without using any______.

pointers

constants variables functions

28. For the heap sort we store the tree nodes in

level-order traversal in-order traversal pre-order traversal post-order traversal

29. The sieve technique works in _____ as follows

Page 34

Phases	
numbers	
integers	
routines	

30. In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent ______ series in the analysis,

linear arithmetic geometric exponent

31. We do sorting to,

keep elements in random positions keep the algorithm run in linear order keep the algorithm run in (log n) order **keep elements in increasing or decreasing order**

32. In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,

T(n)T(n / 2) log nn / 2 + n / 4

33. In which order we can sort?

increasing order only decreasing order only increasing order or decreasing order both at the same time

34. In Sieve Technique we do not know which item is of interest

<mark>True</mark> False 35. For the sieve technique we solve the problem,

recursively

mathematically precisely

36. Divide-and-conquer as breaking the problem into a small number of

pivot Sieve <mark>smaller sub problems</mark> Selection

36. Question # 1 of 10 Total Marks: 1 Divide-and-Conquer is as breaking the problem into a small number of

Smaller Sub Problems

· Pivot

· Sieve

 \cdot Solutions

37. Question # 2 of 10 Total Marks: 1 Analysis of Selection Sort ends up with

• <mark>T(n)</mark>

Page 37

 $\overline{T(1/1+n)}$

 \cdot T(n/2)

· T((n/2) +n)

38. Question # 3 of 10 Total Marks: 1

How many elements do we eliminate each time for the Analysis of Selection Algorithm?

- \cdot (n / 2)+n Elements
- \cdot n / 2 Elements
- \cdot n / 4 Elements
- $\cdot 2$ n Elements

39. Question # 4 of 10 Total Marks: 1

A *heap* is a left-complete binary tree that conforms to the ?

- · Increasing Order
- · Decreasing order

• Heap Order

 \cdot (nlog n) order

40. Question # 5 of 10 Total Marks: 1

The Sieve Sequence is a special case where the number of smaller sub problems is just_.

· 4 · Many <u>· 1</u> · Few

41. Question # 6 of 10 Total Marks: 1

Heaps can be stored in arrays without using any pointers this is due to the of the binary tree?

- · Tree Nodes
- · Right-Complete Nature
- Left-Complete Nature
- · Tree Leaves

42. Question # 7 of 10 Total Marks: 1

For the Heap Sort access to nodes involves simple _ operations:

- \cdot Geometric
- · Linear

Arithmetic

- \cdot Algebraic
- 43. Question # 8 of 10 Total Marks: 1

The Analysis of Selection Sort shows that the total running time is indeed in n?

- · Geometric
- <mark>Linear</mark>
- · Arithmetic
- · Algebraic

44. Question # 9 of 10 Total Marks: 1 For the sieve technique we solve the problem

- Recursively
- \cdot Randomly
- · Mathematically
- · Precisely

45. Question # 10 of 10 Total Marks: 1

How much time merger sort takes for an array of numbers?

• T(n^2) • T(n)

	Page	30
--	------	----

- $\cdot T(\log n)$
- $\cdot T(n \log n)$

_ is a graphical representation of an algorithm

Segma Notation
 Thita Notation
 Flowchart
 Asymptotic notation

Correct Choice : 3 From Lectuer # 2

47. What will be the total number of max comparisons if we run brute-force maxima algorithm with n elements?

1. n^2 2. n^n/2 3. n 4. n^8 Correct Choice : 1 From Lectuer # 3

48. function is given like 4n^4+ 5n^3+n what is the run time of this
1. theata(n^4)
2. theata(n^3)
3. theata(4n^4+ 5n^3)
4. theata(4n^4+ 5n^3)
Correct Choice : 1 From Lectuer # 4

49. Consider the following code: For(j=1; j

```
50. Execution of the following code fragment
int i = N; while (i > 0)
2
{ int Sum = 0; int j;
for (j = 0; j Sum++;
cout
```

51. Let us say we have an algorithm that carries out N2 operations for an input of size N. Let us say that a computer takes 1 microsecond (1/1000000 second) to carry out one operation. How long does the algorithm run for an input of size 3000?

1.90 seconds

2.9 seconds

3. 0.9 seconds

4. 0.09 seconds

Correct Choice : 2 From Lectuer #4

52. The appropriate big thita classification of the given function. f(n) = 4n2 + 97n + 1000 is

1. ?(n)

2. $O(2^n)$

3. O(n^2)

4. O(n^2logn)

Correct Choice : 3 From Lectuer #4

53. The appropriate big ? classification of the given function. f(n) = 4n2 + 97n + 1000 is
1. ?(n)
2. O(2^n)
3. O(n^2)
4. O(n^2logn)
Correct Choice : 3 From Lectuer # 4

46.

54. Which sorting algorithm is faster
1. O (n log n)
2. O n^2
3. O (n+k)
4. O n^3
Correct Choice : 3 From Lectuer # 5

55 - If algorithm A has running time $7n^2 + 2n + 3$ and algorithm B has running time $2n^2$, then

1. Both have same asymptotic time complexity

2. A is asymptotically greater

3. B is asymptotically greater

4. None of others

Correct Choice : 1 From Lectuer # 6

56 - If algorithm A has running time $7n^2 + 2n + 3$ and algorithm B has running time $2n^2$, then

1. Both have same asymptotic time complexity

2. A is asymptotically greater

3. B is asymptotically greater

4. None of others

Correct Choice : 1 From Lectuer # 6

57 - What is the solution to the recurrence T(n) = T(n/2)+n. 1. O(logn) 2. O(n) 3. O(nlogn) 4. O(n^2) Correct Choice : 1 From Lectuer # 8

58 - How much time merge sort takes for an array of numbers?
1. (n²)
2. T(n)
3. T(log n)
4. T(n log n)
Correct Choice : 2 From Lectuer # 8

59 - Consider the following Algorithm: Factorial (n){ if (n=1) return 1 else return (n * Factorial(n-1)) } Recurrence for the following algorithm is: 1. T(n) = T(n-1) +1 2. T(n) = nT(n-1) +1 3. T(n)=T(n-1) +n 4. T(n)=T(n(n-1)) +1 Correct Choice : 4 From Lectuer # 9

60 - For the Sieve Technique we take time
1. T(nk) .
2. T(n / 3) 4
3. n^2
4. n/3
Correct Choice : 1 From Lectuer # 10

61 - Sieve Technique applies to problems where we are interested in finding a single item from a larger set of _____

- 1. n items
- 2. phases
- 3. pointers
- 4. constant

Correct Choice : 1 From Lectuer # 10

62 - In Sieve Technique we do not know which item is of interest

1. FALSE

2. TRUE

Correct Choice : 2 From Lectuer # 10

63 - For the sieve technique we solve the problem,

- 1. recursively
- 2. mathematically
- 3. accurately
- 4. precisely

Correct Choice : 1 From Lectuer # 10

64 - For the Sieve Technique we take time
1. T(nk)
2. T(n / 3)
3. n^2
4. n/3
Correct Choice : 1 From Lectuer # 10

65 - How many elements do we eliminate in each time for the Analysis of Selection algorithm?

1. n / 2 elements

2. (n/2) + n elements

3. n / 4 elements

4. n elements

Correct Choice : 4 From Lectuer # 10

66 - Sieve Technique applies to problems where we are interested in finding a single item from a larger set of _____

1. n items

2. phases

3. pointers

4. constant

Correct Choice : 1 From Lectuer # 10

67 - Sieve Technique can be applied to selection problem?

1. TRUE

2. FALSE

Correct Choice : 1 From Lectuer # 10

68 - The analysis of Selection algorithm shows the total running time is indeed _____in n,

1. arithmetic

2. geometric

3. linear

4. orthogonal

Correct Choice : 3 From Lectuer # 10

69 - The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,

1. divide-and-conquer

2. decrease and conquer

3. greedy nature

4. 2-dimension Maxima

Correct Choice : 1 From Lectuer # 10

70 - The sieve technique works in _____ as follows

1. phases

2. numbers

3. integers

4. routines

Correct Choice : 1 From Lectuer # 10

71 - The sieve technique works in ______ as follows

- 1. phases
- 2. numbers
- 3. integers
- 4. routines

Correct Choice : 1 From Lectuer # 10

72 - A (an) ______ is a left-complete binary tree that conforms to the heap order

- 1. heap
- 2. binary tree
- 3. binary search tree
- 4. array

Correct Choice : 1 From Lectuer # 11

73 - For the heap sort, access to nodes involves simple ______ operations.

- 1. arithmetic
- 2. binary
- 3. algebraic
- 4. logarithmic

Correct Choice : 1 From Lectuer # 11

74 - We do sorting to,

- 1. keep elements in random positions
- 2. keep the algorithm run in linear order
- 3. keep the algorithm run in (log n) order
- 4. keep elements in increasing or decreasing order

Correct Choice : 1 From Lectuer # 11

 $\mathbf{75}$ - For the heap sort we store the tree nodes in

- 1. level-order traversal
- 2. in-order traversal
- 3. pre-order traversal
- 4. post-order traversal

Correct Choice : 1 From Lectuer # 11

76 - In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,

1. T(n) 2. T(n / 2) 3. log n 4. n / 2 + n / 4 **Correct Choice : 3 From Lectuer # 11** 77 - In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,

1. T(n) 2. T(n / 2) 3. log n 4. n / 2 + n / 4 Correct Choice : 3 From Lectuer # 11

78 - In which order we can sort?
1. increasing order only
2. decreasing order only
3. increasing order or decreasing order
4. both at the same time
Correct Choice : 3 From Lectuer # 11

79 - One of the clever aspects of heaps is that they can be stored in arrays without using any

1. pointers

2. constants

3. variables

4. functions

Correct Choice : 1 From Lectuer # 11

80 - One of the clever aspects of heaps is that they can be stored in arrays without using any

1. pointers

2. constants

3. variables

4. functions

Correct Choice : 1 From Lectuer # 11

81 - Slow sorting algorithms run in,
1. O(n^2) 8
2. O(n)
3. O(log n)
4. O(n log n)
Correct Choice : 1 From Lectuer # 11

82 - What is the total time to heapify?
1. ?(log n)
2. ?(n log n)
3. ?(n^2 log n)
4. ?(log^2n)
Correct Choice : 1 From Lectuer # 12

83- When we call heapify then at each level the comparison performed takes time It will take O (1)

1. Time will vary according to the nature of input data

2. It can not be predicted

3. It will take O (log n)

4. None of the Given

Correct Choice : 3 From Lectuer # 12

84 - After partitioning array in Quick sort, pivot is placed in a position such that

- 1. Values smaller than pivot are on left and larger than pivot are on right
- 2. Values larger than pivot are on left and smaller than pivot are on right

3. Pivot is the first element of array

4. Pivot is the last element of array

Correct Choice : 2 From Lectuer # 13

85 - The running time of quick sort depends heavily on the selection of

1. No of inputs

2. Arrangement of elements in array

3. Size o elements

4. Pivot element

Correct Choice : 4 From Lectuer # 13

86 - In Quick Sort Constants hidden in T(n log n) are

- 1. Large
- 2. Medium
- 3. Small
- 4. Not Known

Correct Choice : 3 From Lectuer # 14

87 - In Quick Sort Constants hidden in T(n log n) are

- 1. Large
- 2. Medium
- 3. Small

4. Not Known

Correct Choice : 3 From Lectuer # 14

88 - Is it possible to sort without making comparisons?

1. Yes

2. No

Correct Choice : 1 From Lectuer # 15

89 - Merge sort is stable sort, but not an in-place algorithm1. TRUE2. FALSE

Correct Choice : 1 From Lectuer # 15

90 - In counting sort, once we know the ranks, we simply numbers to their final positions in an output array.

1. Delete

2. copy

3. Mark

4. arrange

Correct Choice : 2 From Lectuer # 15

91 - An in place sorting algorithm is one that uses _____ arrays for storage

- 1. Two dimensional arrays
- 2. More than one array
- 3. No Additional Array
- 4. None of the above

Correct Choice : 3 From Lectuer # 15

92 - Continuation/counting sort is suitable to sort the elements in range 1 to k

- 1. K is Large
- 2. K is not known
- 3. K may be small or large
- 4. K is small

Correct Choice : 4 From Lectuer # 15

93 - In stable sorting algorithm.

- 1. If duplicate elements remain in the same relative position after sorting
- 2. One array is used
- 3. More than one arrays are required
- 4. Duplicating elements not handled

Correct Choice : 1 From Lectuer # 15

94 - One example of in place but not stable algorithm is

- 1. Merger Sort
- 2. Quick Sort
- 3. Continuation Sort
- 4. Bubble Sort

Correct Choice : 2 From Lectuer # 15

95 - One example of in place but not stable algorithm is

- 1. Merger Sort
- 2. Ouick Sort
- 3. Continuation Sort
- 4. Bubble Sort

Correct Choice : 2 From Lectuer # 15

96 - One of the clever aspects of heaps is that they can be stored in arrays without using

- any _
- 1. pointers
- 2. constants
- 3. variables
- 4. functions

Correct Choice : 1

97 - Quick sort is

- 1. Stable & in place
- 2. Not stable but in place
- 3. Stable but not in place
- 4. Some time stable & some times in place

Correct Choice : 3 From Lectuer # 15

98 - Quick sort is

- 1. Stable & in place
- 2. Not stable but in place
- 3. Stable but not in place
- 4. Some time stable & some times in place

Correct Choice : 2 From Lectuer # 15

99 - Which may be a stable sort?

- 1. Merger
- 2. Insertion
- 3. Both above
- 4. None of the above
- **Correct Choice : 3 From Lectuer # 15**

100 - Which of the following sorting algorithms is stable?
(i) Merge sort,
(ii) Quick sort,
(iii) Heap sort,
(iv) Counting Sort.
1. Only i
2. Only ii
3. Both i and ii
4. Both iii and iv
Correct Choice : 1 From Lectuer # 15

101 - Mergesort is a stable algorithm but not an in-place algorithm.
1. TRUE
2. FALSE
Correct Choice : 1 From Lectuer # 16

102 - Memorization is?

1. To store previous results for future use

2. To avoid this unnecessary repetitions by writing down the results of recursive calls and looking them up again if we need them later

3. To make the process accurate

4. None of the above

Correct Choice : 2 From Lectuer # 16

103 - Dynamic programming algorithms need to store the results of intermediate sub-problems.1. TRUE

I. TRUE

2. FALSE

Correct Choice : 1 From Lectuer # 17

104 - Dynamic programming uses a top-down approach.
1. TRUE
2. FALSE
Correct Choice : 2 From Lectuer # 17

 ${\bf 105}$ - The edit distance between FOOD and MONEY is

- 1. At most four
- 2. At least four
- 3. Exact four

4. Wrong

Correct Choice : 1 From Lectuer # 17

 $\mathbf{106}$ - The edit distance between FOOD and MONEY is

- 1. At most four
- 2. At least four
- 3. Exact four
- 4. Wrong

Correct Choice : 1 From Lectuer # 17

107 - If there are O (n^2) entries in edit distance matrix then the total running time is
1. O (1)
2. O (n^2)
3. O (n)
4. O (n log n)
Correct Choice : 2 From Lectuer # 18

108 - A p x q matrix A can be multiplied with a q x r matrix B. The result will be a p x r matrix C. There are (p . r) total entries in C and each takes ______ to compute.
1. O (q)
2. O (1)
3. O (n^2)
4. O (n^3)
Correct Choice : 1 From Lectuer # 19

109 - For Chain Matrix Multiplication we can not use divide and conquer approach because,

- 1. We do not know the optimum k
- 2. We use divide and conquer for sorting only
- 3. We can easily perform it in linear time
- 4. Size of data is not given

Correct Choice : 1 From Lectuer # 19

110 - A p x q matrix A can be multiplied with a q x r matrix B. The result will be a p x r matrix C. There are (p . r) total entries in C and each takes ______ to compute.

1. O (q)

2.0(1)

3. O (n^2)

4. O (n^3)

Correct Choice : 1 From Lectuer # 19

111 - The Knapsack problem belongs to the domain of _____ problems.

1. Optimization

- 2. NP Complete
- 3. Linear Solution

4. Sorting

Correct Choice : 1 From Lectuer # 21

112 - Suppose we have three items as shown in the following table, and suppose the capacity of the knapsack is 50 i.e. W = 50. Item Value Weight 1 60 10 2 100 20 3 120 30 The optimal solution is to pick

- 1. Items 1 and 2
- 2. Items 1 and 3

3. Items 2 and 3

4. None of these

Correct Choice : 4 From Lectuer # 22

Correct Choice : 3 From Lectuer # 21

113 - Huffman algorithm uses a greedy approach to generate a postfix code T that minimizes the expected length B (T) of the encoded string.

1. TRUE

2. FALSE Correct Choice : 1 From Lectuer # 22

114 - The codeword assigned to characters by the Huffman algorithm have the property that no codeword is the postfix of any other.

1. TRUE 2. FALSE Correct Choice : 2 From Lectuer # 22

115 - The greedy part of the Huffman encoding algorithm is to first find two nodes with larger frequency.

1. TRUE 2. FALSE

Correct Choice : 2 From Lectuer # 22

116 - An optimization problem is one in which you want to find,

- 1. Not a solution
- An algorithm
 Good solution
- 4. The best solution
CS502 DESIGN AND ANALYSIS OF ALGORITHMS FALL 2010 QUIZ#1 RESCHEDULED HELD ON 25 NOV 2010

117. Question # 1 of 10 Total Marks: 1

Divide-and-Conquer is as breaking the problem into a small number of

Smaller Sub Problems

· Pivot

· Sieve

· Solutions

118. Question # 2 of 10 Total Marks: 1

Analysis of Selection Sort ends up with

 $\cdot \mathbf{T}(\mathbf{n})$

 $\overline{T(1/1+n)}$

· T(n/2)

· T((n/2) + n)

119. Question # 3 of 10 Total Marks: 1

How many elements do we eliminate each time for the Analysis of Selection Algorithm?

 \cdot (n / 2)+n Elements

- · n / 2 Elements
- \cdot n / 4 Elements
- $\cdot 2$ n Elements

120. Question # 4 of 10 Total Marks: 1

A heap is a left-complete binary tree that conforms to the ?

· Increasing Order

· Decreasing order

• Heap Order

 \cdot (nlog n) order

121. Question # 5 of 10 Total Marks: 1

The Sieve Sequence is a special case where the number of smaller sub problems is just_.

• 4

• Many

<u>• 1</u>

· Few

122. Question # 6 of 10 Total Marks: 1

Heaps can be stored in arrays without using any pointers this is due to the _____ of the binary tree?

• Tree Nodes

· Right-Complete Nature

Left-Complete Nature

 \cdot Tree Leaves

123. Question # 7 of 10 Total Marks: 1

For the Heap Sort access to nodes involves simple _ operations:

- · Geometric
- · Linear

Arithmetic

· Algebraic

124. Question # 8 of 10 Total Marks: 1

The Analysis of Selection Sort shows that the total running time is indeed in n?

- · Geometric
- · Linear
- · Arithmetic
- · Algebraic

125. Question # 9 of 10 Total Marks: 1
For the sieve technique we solve the problem
Recursively

• <u>Recursiver</u>

- · Randomly
- · Mathematically
- \cdot Precisely

126. Question # 10 of 10 Total Marks: 1

How much time merger sort takes for an array of numbers?

- T(n^2)
- T(n)
- $\cdot T(\log n)$
- T(n log n)

127. What type of instructions Random access machine can execute? Choose best answer. Geometric and arithmetic Algebraic and logic Arithmetic and logic Page 10 Parallel and recursive 128. Due to left complete nature of binary tree, the heap can be stored in Page 40 Arrays • Structures • Link Lis • Stack What type of instructions Random Access Machine (RAM) can execute? 129. Choose best answer Algebraic and logic

Geometric and arithmetic	
Arithmetic and logic	Page 10
Parallel and recursive	

130. For Chain Matrix Multiplication we can not use divide and conquer approach because,

	We do not know the optimum k	Page 86
	We use divide and conquer for sorting only ``	
	We can easily perform it in linear time	
	Size of data is not given	
131.	knapsack problem is called a "0-1" problem,	because

132. word Algorithm comes from the name of the muslim author <u>Abu Ja'far Mohammad ibn Musa al-</u><u>Khowarizmi</u>. Page 7

133. al-Khwarizmi's work was written in a book titled <u>al Kitab al-mukhatasar fi hisab al-jabr wa'l-muqabalah</u> Page 7

134. What is the total time to heapify?

- O(log n) Page 43
- $O(n \log n)$
- O(n2 logn)
- O(log2n)

machi	ne or RAM is a/an	
	 Machine build by Al-Khwarizmi 	
	Mechanical machine	
	Electronics machine	
	Mathematical model Page 10	
136.	Question No: 2 (Marks: 1) - Please choose one	
	is a graphical representation of an algorithm Σ notation	
	Θ	
	• notation	
	Asymptotic notation	
	Asymptotic notation	
137.	Question No: 3 (Marks: 1) - Please choose one	A RAM is an
idealiz	zed machine with random-access memory.	
	• 256MB	
	• 512MB	
	an infinitely large Page 10	
	100GB	
138.	Question No: 4 (Marks: 1) - Please choose one	What type of
instru	ctions Random Access Machine (RAM) can execute? Choose best answer	what type of
	 Algebraic and logic 	
	• Geometric and arithmetic	
	• Arithmetic and logic Page 10	
	Parallel and recursive	
139.	Question No: 5 (Marks: 1) - Please choose one	
		What will be
the to	al number of max comparisons if we run brute-force maxima algorithm with n e	lements?
	n^2 P oge 14	

What is the

Consider the

What is the total

solution to the recurrence T(n) = T(n/2) + n.

- $\blacktriangleright O(\log n)$
- $\blacktriangleright O(n)$
- $\blacktriangleright \overline{O(n \log n)}$
- $\blacktriangleright O(n^2)$

141. Question No: 7 (Marks: 1) - Please choose one

```
following code:

For(j=1; j<n;j++)

For(k=1; k<15;k++)

For(l=5; l<n; l++)

{

Do_something_constant();

}

What is the order of execution for this code.
```

- O(n) $O(n^3)$ $O(n^2 \log n)$ $O(n^2)$
- 142. Question No: 8 (Marks: 1) Please choose one

Consider the

```
following Algorithm:

Factorial (n){

if (n=1)

return 1

else

return (n * Factorial(n-1))

{

Recurrence for the following algorithm is:

\blacktriangleright T(n) = T(n-1) +1

\blacktriangleright T(n) = nT(n-1) +1

\blacktriangleright T(n)=T(n-1) +n

\blacktriangleright T(n)=T(n-1)) +1
```

143. Question No: 9 (Marks: 1) - Please choose one

```
time to heapify?
```

```
    ▶ O(log n)
    ▶ O(n log n)
    ▶ O(n<sup>2</sup> log n)
    ▶ O(log<sup>2</sup> n)
```

heapify then at each level the comparison performed takes time

- ► It will take Θ (1) Page 43
- ► Time will vary according to the nature of input data
- ► It can not be predicted
- ► It will take $\Theta(\log n)$

145. Question No: 11 (Marks: 1) - Please choose one

In Quick sort, we don't have the control over the sizes of recursive calls

- ► True Page 49
- ► False
- ► Less information to decide
- ► Either true or false

```
146. Question No: 12 (Marks: 1) - Please choose one
```

Is it possible to sort without making comparisons?

```
YesPage 57
```

► No

147. Question No: 13 (Marks: 1) - Please choose one

If there are $\Theta(n^2)$ entries in edit distance matrix then the total running time is

- ► Θ (1)
- $\blacktriangleright \Theta(n^2)$ Page 84
- $\blacktriangleright \Theta(n)$
- $\blacktriangleright \Theta$ (n log n)

148. Question No: 14 (Marks: 1) - Please choose one

For Chain Matrix Multiplication we can not use divide and conquer approach because,

- **We do not know the optimum k** Page 86
- ► We use divide and conquer for sorting only
- ► We can easily perform it in linear time
- ► Size of data is not given

149. Question No: 15 (Marks: 1) - Please choose one

The Knapsack problem belongs to the domain of _____ problems.

- Optimization Page 91
- ► NP Complete
- ► Linear Solution
- ► Sorting

Suppose we

have three items as shown in the following table, and suppose the capacity of the knapsack is 50 i.e. W = 50.

Item	Value	Weight
1	60	10
2	100	20
3	120	30

The optimal solution is to pick

► Items 1 and 2

► Items 1 and 3

► Items 2 and 3

Page 91

► None of these

151.	Sorting is one of the few problems where provable	bonds exits on how fast we can sort,
upper <mark>lower</mark> averag log n	Page 39 e	
152. 2*(h+1) 2*(h+1) ((h+1)	The number of nodes in a complete binary tree of height h is $\begin{array}{r} 1 - 1 \\ 1 - 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \end{array}$	
153. <mark>T(nk)</mark> T(n/3) n^2 n/3	For the Sieve Technique we take time Page 34	
154. large mediu Not kn <u>small</u>	In Quick sort algorithm, constants hidden in T(n lg n) are m own	
155. To stor	Memoization is: re previous results for further use	
10 ave	led later Page 74	ecursive calls and looking them again
To ma	ke the process accurate	
None of	of the above	
156.	Counting sort has time complexity of?	

O(n) O(n+k) O(nlogn) O(k)

CS502 - Fundamentals of Algorithms Quiz No.1 12-11-2012

Question # 1 of 10 (Start time: 06:18:58 PM) Total Marks: 1 We do sorting to, Select correct option:

keep elements in random positions keep the algorithm run in linear order keep the algorithm run in (log n) order keep elements in increasing or decreasing order

Question # 2 of 10 (Start time: 06:19:38 PM) Total Marks: 1 Heaps can be stored in arrays without using any pointers; this is due to the ______ nature of the binary tree, Select correct option:

left-complete

right-complete tree nodes tree leaves

Question # 3 of 10 (Start time: 06:20:18 PM) Total Marks: 1 Sieve Technique can be applied to selection problem? Select correct option:

True

False

Question # 4 of 10 (Start time: 06:21:10 PM) Total Marks: 1 A heap is a left-complete binary tree that conforms to the ______ Select correct option:

increasing order only decreasing order only heap order

(log n) order

Question # 5 of 10 (Start time: 06:21:39 PM) Total Marks: 1 A (an) ______ is a left-complete binary tree that conforms to the heap order Select correct option:

<mark>heap</mark>

binary tree binary search tree array

Question # 6 of 10 (Start time: 06:22:04 PM) Total Marks: 1 Divide-and-conquer as breaking the problem into a small number of Select correct option:

pivot

Sieve <mark>smaller sub problems</mark> Selection

Question # 7 of 10 (Start time: 06:22:40 PM) Total Marks: 1 In Sieve Technique we do not know which item is of interest Select correct option:

True

False

Question # 8 of 10 (Start time: 06:23:26 PM) Total Marks: 1 The recurrence relation of Tower of Hanoi is given below T(n)={1 if n=1 and 2T(n-1) if n >1 In order to move a tower of 5 rings from one peg to another, how many ring moves are required? Select correct option:

For the heap sort, access to nodes involves simple ______ operations. Select correct option: arithmetic binary algebraic logarithmic For the sieve technique we solve the problem, Select correct option: recursively mathematically precisely accurately The sieve technique works in ______ as follows Select correct option: phases numbers

integers

routines

Slow sorting algorithms run in,

Select correct option:

<mark>T(n^2)</mark>

T(n)

T(log n)

A (an) ______ is a left-complete binary tree that conforms to the heap order Select correct option:

heap

binary tree binary search tree array

In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent ______ series in the analysis,

Select correct option:

linear

arithmetic

geometric

exponent

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as, Select correct option:

T(n) T(n / 2) log n n / 2 + n / 4

The sieve technique is a special case, where the number of sub problems is just Select correct option:

```
5
many
1
few
In which order we can sort?
Select correct option:
increasing order only
decreasing order only
increasing order or decreasing order
both at the same time
```

The recurrence relation of Tower of Hanoi is given below $T(n)=\{1 \text{ if } n=1 \text{ and } 2T(n-1) \text{ if } n > 1 \text{ In order to move a tower of 5 rings from one peg to another, how many ring moves are required? Select correct option:$

16

10

<mark>32</mark> 31

Analysis of Selection algorithm ends up with, Select correct option: T(n)T(1 / 1 + n)T(n / 2)T((n / 2) + n)

We do sorting to, Select correct option:

keep elements in random positions keep the algorithm run in linear order keep the algorithm run in (log n) order keep elements in increasing or decreasing order

Divide-and-conquer as breaking the problem into a small number of Select correct option:

pivot Sieve <mark>smaller sub problems</mark> Selection

The analysis of Selection algorithm shows the total running time is indeed ______in n, Select correct option:

arithmetic geometric linear orthogonal

How many elements do we eliminate in each time for the Analysis of Selection algorithm? Select correct option:

n / 2 elements (n / 2) + n elements n / 4 elements 2 n elements Sieve Technique can be applied to selection problem? Select correct option:

True

false

For the heap sort we store the tree nodes in Select correct option:

level-order traversal

in-order traversal pre-order traversal post-order traversal

<mark>pointers</mark>

constants

variables functions

A (an) ______ is a left-complete binary tree that conforms to the heap order Select correct option: heap binary tree binary search tree

array

Divide-and-conquer as breaking the problem into a small number of
Select correct option:
pivot
Sieve
smaller sub problems
Selection

Heaps can be stored in arrays without using any pointers; this is due to the	nature of the binary tree,
Select correct option:	
left-complete	
right-complete	
tree nodes	

tree leaves

For the sieve technique we solve the problem, Select correct option: recursively mathematically precisely accurately A heap is a left-complete binary tree that conforms to the _____ Select correct option: increasing order only decreasing order only heap order

(log n) order

We do sorting to, Select correct option: keep elements in random positions keep the algorithm run in linear order keep the algorithm run in (log n) order keep elements in increasing or decreasing order

How many elements do we eliminate in each time for the Analysis of Selection algorithm? Select correct option:

n / 2 elements (n / 2) + n elements n / 4 elements 2 n elements

How much time merge sort takes for an array of numbers? Select correct option: T(n^2) T(n) T(log n) T(n log n)

The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of, Select correct option: divide-and-conquer decrease and conquer

greedy nature 2-dimension Maxima Question # 1 of 10 (Start time: 08:17:23 AM) Total M a r k s: 1 The number of nodes in a complete binary tree of height h is Select correct option: $2^{(h+1) - 1}$ 2 * (h+1) - 1 2 * (h+1) ((h+1)^2) - 1

Question # 2 of 10 (Start time: 08:18:46 AM) Total M a r k s: 1 A (an) ______ is a left-complete binary tree that conforms to the heap order Select correct option: heap binary tree

binary search tree array

Question # 3 of 10 (Start time: 08:19:38 AM) Total M a r k s: 1 In Sieve Technique we do not know which item is of interest Select correct option:

True

False

Question # 4 of 10 (Start time: 08:20:33 AM) Total M a r k s: 1 Heaps can be stored in arrays without using any pointers; this is due to the ______ nature of the binary tree,

Select correct option:

left-complete right-complete tree nodes tree leaves

Question # 5 of 10 (Start time: 08:21:59 AM) Total M a r k s: 1 In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as, Select correct option: T(n) T(n / 2) log n n / 2 + n / 4

Question # 6 of 10 (Start time: 08:23:01 AM) Total M a r k s: 1 For the sieve technique we solve the problem, Select correct option: recursively mathematically precisely accurately Theta asymptotic notation for T (n) : Select correct option: Set of functions described by: c1g(n)Set of functions described by c1g(n)>=f(n) for c1 s Theta for T(n)is actually upper and worst case comp Set of functions described by: c1g(n)

Question # 8 of 10 (Start time: 08:24:39 AM) Total M a r k s: 1 The sieve technique is a special case, where the number of sub problems is just Select correct option: 5 many 1 few Question # 9 of 10 (Start time: 08:25:54 AM) Total M a r k s: 1 Sieve Technique applies to problems where we are interested in finding a single item from a larger set of ______ Select correct option: n items phases pointers constant

Question # 10 of 10 (Start time: 0	08:26:44 AM) Total M a r k s: 1
The sieve technique works in	as follows
Select correct option:	
<mark>phases</mark>	

numbers integers routines

Memorization is?

To store previous results for future use

To avoid this unnecessary repetitions by writing down the results of recursive calls and looking them up again if we need them later

To make the process accurate

None of the above

Question # 2 of 10 Total M a r k s: 1

Which sorting algorithm is faster

<mark>O (n log n)</mark>

O n^2

Quick sort is

Stable & in place

Not stable but in place

Stable but not in place

Some time stable & some times in place

One example of in place but not stable algorithm is

Merger Sort

Quick Sort

Continuation Sort

Bubble Sort

In Quick Sort Constants hidden in T(n log n) are

Large

Medium

<mark>Small</mark>

Not Known

Continuation sort is suitable to sort the elements in range 1 to k

K is Large

K is not known

K may be small or large

<mark>K is small</mark>

In stable sorting algorithm.

If duplicate elements remain in the same relative position after sorting

One array is used

More than one arrays are required

Duplicating elements not handled

Which may be a stable sort?

Merger

Insertion

Both above

None of the above

An in place sorting algorithm is one that uses _____ arrays for storage

Two dimensional arrays

More than one array

No Additional Array

None of the above

Continuing sort has time complexity of ?

<mark>O(n)</mark>

O(n+k)

O(nlogn)

O(k)

We do sorting to,

keep elements in random positions

keep the algorithm run in linear order

keep the algorithm run in (log n) order

keep elements in increasing or decreasing order

In Sieve Technique we donot know which item is of interest

False

A (an) _____ is a left-complete binary tree that conforms to the

heap order

<mark>heap</mark>

binary tree

binary search tree

array

27. The sieve technique works in _____ as follows

phases

numbers

integers

routines

For the sieve technique we solve the problem,

recursively

mathematically

precisely

accurately

29. For the heap sort, access to nodes involves simple _____

operations.

arithmetic

binary

algebraic

logarithmic

The analysis of Selection algorithm shows the total running time is

indeed _____in n,\

arithmetic

geometric

linear

orthogonal

For the heap sort, access to nodes involves simple _____

operations.

Select correct option:

arithmetic

binary

algebraic

logarithmic

Sieve Technique applies to problems where we are interested in finding a

single item from a larger set of _____

Select correct option:

<mark>n items</mark>

phases

pointers

constant

Question # 9 of 10 (Start time: 07:45:36 AM) Total Marks: 1

In Sieve Technique we do not know which item is of interest

Select correct option:

True

False

How much time merge sort takes for an array of numbers?

Select correct option:

T(n^2)

T(n)

T(log n)

<mark>T(n log n)</mark>

For the heap sort we store the tree nodes in

Select correct option:

level-order traversal

in-order traversal

pre-order traversal

post-order traversal

Sorting is one of the few problems where provable	bonds exits on
how fast we can sort,	
Select correct option:	
upper	
lower	
average	
log n	
single item from a larger set of	
Select correct option:	
n items	
phases	
pointers	
constant	
A heap is a left-complete binary tree that conforms to the	
Select correct option:	
increasing order only	
decreasing order only	

heap order

(log n) order

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,

Select correct option:

T(n)

T(n / 2)

<mark>log n</mark>

n/2+n/4

The reason for introducing Sieve Technique algorithm is that it illustrates a

very important special case of,

Select correct option:

divide-and-conquer

decrease and conquer

greedy nature

2-dimension Maxima

The sieve technique works in a	as follows
--------------------------------	------------

Select correct option:

phases

numbers

integers

routines

For the Sieve Technique we take time

Select correct option:

T(nk)

T(n / 3)

n^2

n/3

In the analysis of Selection algorithm, we eliminate a constant fraction of the

array with each phase; we get the convergent ______ series in the

analysis,

linear

arithmetic

geometric

exponent

Analysis of Selection algorithm ends up with,

Select correct option:

T(n)

T(1 / 1 + n)

T(n / 2)

T((n / 2) + n)

Quiz Start Time: 07:23 PM Time Left 90 sec(s) Question # 1 of 10 (Start time: 07:24:03 PM) Total M a r k s: 1 In in-place sorting algorithm is one that uses arrays for storage : Select correct option: An additional array No additional array Both of above may be true according to algorithm

More than 3 arrays of one dimension.

Time Left 89 sec(s) Question # 2 of 10 (Start time: 07:25:20 PM) Total M a r k s: 1 Which sorting algorithn is faster : Select correct option: O(n^2) O(nlogn) O(n+k) O(n^3) In stable sorting algorithm: Select correct option: One array is used In whcih duplicating elements are not handled. More then one arrays are required. Duplicating elements remain in same relative posistion after sorting.

Counting sort has time complexity: Select correct option: O(n) O(n+k) O(k) O(nlogn)

Counting sort is suitable to sort the elements in range 1 to k: Select correct option: K is large K is small K may be large or small None

Memorization is : Select correct option: To store previous results for further use. **To avoid unnecessary repetitions by writing down the results of recursive calls and looking them again if needed later** To make the process accurate. None of the above

The running time of quick sort depends heavily on the selection of Select correct option: No of inputs Arrangement of elements in array Size o elements **Pivot elements**

Which may be stable sort: Select correct option: Bubble sort Insertion sort Both of above In Quick sort algorithm, constants hidden in T(n lg n) are Select correct option: Large Medium Not known small

Quick sort is Select correct option: Stable and In place Not stable but in place Stable and not in place Some time in place and some time stable

For the Sieve Technique we take time

<mark>T(nk)</mark>	
T(n / 3)	
n^2	

The sieve technique is a special case, where the number of sub problems is just

Select correct option:

5

n/3

Many

1

Few

The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,

Select correct option:

divide-and-conquer

decrease and conquer

greedy nature

Which may be stable sort: Select correct option: Bubble sort Insertion sort Both of above

Selection sort

In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent _______ series in the analysis, Select correct option:
linear
arithmetic
geometric
exponent

In Quick sort algorithm, constants hidden in T(n lg n) are Select correct option:

Large Medium Not known small

How much time merge sort takes for an array of numbers? Select correct option:

T(n^2) <mark>T(n)</mark> T(log n) T(n log n)

Counting sort has time complexity: Select correct option:

<mark>O(n)</mark>

O(n+k) O(k) O(nlogn)

In which order we can sort? Select correct option:

increasing order only

decreasing order only increasing order or decreasing order both at the same time

A (an) ______ is a left-complete binary tree that conforms to the heap order Select correct option:

<mark>heap</mark>

binary tree binary search tree array

The analysis of Selection algorithm shows the total running time is indeed ______in n, Select correct option:

arithmetic geometric linear orthogonal

Quick sort is based on divide and conquer paradigm; we divide the problem on base of pivot element and: Select correct option:

There is explicit combine process as well to conquer the solution. No work is needed to combine the sub-arrays, the array is already sorted Merging the sub arrays None of above.

Sorting is one of the few problems where provable _____ bonds exits on how fast we can sort, Select correct option:

upper <mark>lower</mark> average log n

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as, T(n)T(n / 2) log n

n/2+n/4

Quick sort is based on divide and conquer paradigm; we divide the problem on base of pivot element and: There is explicit combine process as w ell to conquer No w ork is needed to combine the sub-arrays, the a Merging the subarrays

None of above

The number of nodes in a complete binary tree of height h is

2^(h+1) - 1 2 * (h+1) - 1 2 * (h+1) ((h+1) ^ 2) - 1

How many elements do we eliminate in each time for the Analysis of Selection algorithm? n / 2 elements (n / 2) + n elements n / 4 elements 2 n elements

Which sorting algorithn is faster : O(n^2) O(nlogn) O(n+k) O(n^3)

We do sorting to, keep elements in random positions keep the algorithm run in linear order

keep the algorithm run in (log n) order keep elements in increasing or decreasing order

Slow sorting algorithms run in,

T(n^2) T(n) T(log n) T(n log n)

One of the clever aspects of heaps is that they can be stored in arrays without using any

Pointers

Constants Variables Functions

Counting sort is suitable to sort the elements in range 1 to k: K is large K is small K may be large or small None

We do sorting to, Select correct option:

keep elements in random positions

keep the algorithm run in linear order keep the algorithm run in (log n) order <mark>keep elements in increasing or decreasing order</mark>

Question # 2 of 10 (Start time: 06:19:38 PM) Total Marks: 1 Heaps can be stored in arrays without using any pointers; this is due to the ______ nature of the binary tree, Select correct option:

left-complete

right-complete tree nodes tree leaves

Question # 3 of 10 (Start time: 06:20:18 PM) Total Marks: 1 Sieve Technique can be applied to selection problem? Select correct option:

True

False

Question # 4 of 10 (Start time: 06:21:10 PM) Total Marks: 1 A heap is a left-complete binary tree that conforms to the ______ Select correct option:

increasing order only decreasing order only heap order (log n) order

Question # 5 of 10 (Start time: 06:21:39 PM) Total Marks: 1 A (an) ______ is a left-complete binary tree that conforms to the heap order Select correct option:

<mark>heap</mark>

binary tree binary search tree array

Question # 6 of 10 (Start time: 06:22:04 PM) Total Marks: 1 Divide-and-conquer as breaking the problem into a small number of Select correct option:

pivot Sieve <mark>smaller sub problems</mark> Selection

Question # 7 of 10 (Start time: 06:22:40 PM) Total Marks: 1 In Sieve Technique we do not know which item is of interest Select correct option:

Question # 8 of 10 (Start time: 06:23:26 PM) Total Marks: 1 The recurrence relation of Tower of Hanoi is given below T(n)={1 if n=1 and 2T(n-1) if n >1 In order to move a tower of 5 rings from one peg to another, how many ring moves are required? Select correct option:

1	6

10

<mark>32</mark>

31

Question # 9 of 10 (Start time: 06:24:44 PM) Total Marks: 1 In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent ______ series in the analysis, Select correct option:

linear
arithmetic
geometric
exponent

Question # 10 of 10 (Start time: 06:25:43 PM) Total Marks: 1 For the heap sort, access to nodes involves simple operations. Select correct option: arithmetic binary algebraic logarithmic For the sieve technique we solve the problem, Select correct option: **recursively** mathematically precisely accurately The sieve technique works in as follows Select correct option: phases numbers integers routines Slow sorting algorithms run in, Select correct option: T(n^2) T(n) T(log n) A (an) ______ is a left-complete binary tree that conforms to the heap order

Select correct option: heap binary tree binary search tree array

In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent _______ series in the analysis, Select correct option: linear arithmetic geometric exponent

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as, Select correct option:

T(n) T(n / 2) <mark>log n</mark> n / 2 + n / 4

The sieve technique is a special case, where the number of sub problems is just Select correct option:

```
5
many
<mark>1</mark>
few
```

In which order we can sort? Select correct option: increasing order only decreasing order only increasing order or decreasing order both at the same time

The recurrence relation of Tower of Hanoi is given below $T(n)=\{1 \text{ if } n=1 \text{ and } 2T(n-1) \text{ if } n > 1 \text{ In order to move a tower of 5 rings from one peg to another, how many ring moves are required? Select correct option:$

Analysis of Selection algorithm ends up with, Select correct option: T(n)T(1 / 1 + n)T(n / 2)T((n / 2) + n) We do sorting to, Select correct option:

keep elements in random positions keep the algorithm run in linear order keep the algorithm run in (log n) order keep elements in increasing or decreasing order

Divide-and-conquer as breaking the problem into a small number of Select correct option:

pivot Sieve <mark>smaller sub problems</mark> Selection

The analysis of Selection algorithm shows the total running time is indeed ______in n, Select correct option:

arithm	etic
geome	etric
linear	
orthog	gonal

How many elements do we eliminate in each time for the Analysis of Selection algorithm? Select correct option:

n / 2 elements (n / 2) + n elements n / 4 elements 2 n elements

Sieve Technique can be applied to selection problem? Select correct option:

True false

For the heap sort we store the tree nodes in Select correct option:

level-order traversal in-order traversal pre-order traversal post-order traversal One of the clever aspects of heaps is that they can be stored in arrays without using any

·	
Select correct option:	
pointers	
constants	
variables	
functions	
A (an) is a left-complete binary tree that conforms to the heap order	
Select correct option:	
heap	
hinary tree	
hinary search tree	
array	
anay	
Divide-and-conquer as breaking the problem into a small number of	
Select correct option:	
pivot	
Sieve	
smaller sub problems	
Selection	
Heaps can be stored in arrays without using any pointers; this is due to the nature of t binary tree, Select correct option: Ieft-complete right-complete tree nodes tree leaves	:he
For the sieve technique we solve the problem.	
Select correct option:	
recursively	
mathematically	
nrecisely	
accurately	
A heap is a left-complete binary tree that conforms to the	
Select correct option:	
increasing order only	
decreasing order only	
heap order	
(log n) order	
We do sorting to.	

Select correct option: keep elements in random positions keep the algorithm run in linear order keep the algorithm run in (log n) order <mark>keep elements in increasing or decreasing order</mark>

How many elements do we eliminate in each time for the Analysis of Selection algorithm? Select correct option: n / 2 elements

(n / 2) + n elements n / 4 elements 2 n elements

How much time merge sort takes for an array of numbers?
Select correct option:
T(n^2)
Γ(n)
T(log n)
T(n log n)

The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of, Select correct option: divide-and-conquer

decrease and conquer greedy nature 2-dimension Maxima

```
Question # 1 of 10 (Start time: 08:17:23 AM) Total M a r k s: 1
The number of nodes in a complete binary tree of height h is
Select correct option:
2^(h+1) – 1
2 * (h+1) – 1
2 * (h+1)
((h+1) ^ 2) - 1
Question # 2 of 10 (Start time: 08:18:46 AM) Total M a r k s: 1
A (an) is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array
Question # 3 of 10 (Start time: 08:19:38 AM) Total M a r k s: 1
In Sieve Technique we do not know which item is of interest
Select correct option:
```

```
True
```

False

Question # 4 of 10 (Start time: 08:20:33 AM) Total M a r k s: 1 Heaps can be stored in arrays without using any pointers; this is due to the

nature of the binary tree, Select correct option: left-complete right-complete tree nodes tree leaves Question # 5 of 10 (Start time: 08:21:59 AM) Total M a r k s: 1 In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as, Select correct option: T(n) T(n / 2) log n n/2 + n/4Question # 6 of 10 (Start time: 08:23:01 AM) Total M a r k s: 1 For the sieve technique we solve the problem, Select correct option: **recursively** mathematically precisely accurately Theta asymptotic notation for T (n) : Select correct option: Set of functions described by: c1g(n)Set of functions described by c1g(n) >= f(n) for c1 sTheta for T(n)is actually upper and worst case comp Set of functions described by: c1g(n) Question # 8 of 10 (Start time: 08:24:39 AM) Total M a r k s: 1 The sieve technique is a special case, where the number of sub problems is just Select correct option: 5 many 1 few Question # 9 of 10 (Start time: 08:25:54 AM) Total M a r k s: 1 Sieve Technique applies to problems where we are interested in finding a single item from a larger set of Select correct option: <mark>n items</mark> phases pointers constant Question # 10 of 10 (Start time: 08:26:44 AM) Total M a r k s: 1 The sieve technique works in ______ as follows Select correct option: phases

numbers

integers routines

Memorization is? To store previous results for future use To avoid this unnecessary repetitions by writing down the results of recursive calls and looking them up again if we need them later To make the process accurate None of the above

Question # 2 of 10 Total M a r k s: 1 Which sorting algorithm is faster O (n log n) O n^2 O (n+k) O n^3

Quick sort is Stable & in place Not stable but in place Stable but not in place Some time stable & some times in place

One example of in place but not stable algorithm is Merger Sort Quick Sort Continuation Sort Bubble Sort

In Quick Sort Constants hidden in T(n log n) are Large Medium Small Not Known

Continuation sort is suitable to sort the elements in range 1 to k K is Large K is not known K may be small or large K is small

In stable sorting algorithm. If duplicate elements remain in the same relative position after sorting One array is used More than one arrays are required Duplicating elements not handled

Which may be a stable sort? Merger Insertion Both above
None of the above

An in place sorting algorithm is one that uses _____ arrays for storage Two dimensional arrays More than one array No Additional Array None of the above

Continuing sort has time complexity of ? O(n) O(n+k) O(nlogn) O(k)

We do sorting to, keep elements in random positions keep the algorithm run in linear order keep the algorithm run in (log n) order keep elements in increasing or decreasing order

In Sieve Technique we donot know which item is of interest

<mark>True</mark>

False
A (an) is a left-complete binary tree that conforms to the
heap order
<mark>heap</mark>
binary tree
binary search tree
array
27. The sieve technique works in as follows
<mark>phases</mark>
numbers
integers
routines
For the sieve technique we solve the problem,
recursively
mathematically
precisely
accurately
29. For the heap sort, access to nodes involves simple
operations.
<mark>arithmetic</mark>
binary
algebraic
logarithmic

The analysis of Selection algorithm shows the total running time is indeed ______in n,\ arithmetic geometric linear orthogonal

For the heap sort, access to nodes involves simple _____

operations. Select correct option:

<mark>arithmetic</mark>

binary algebraic logarithmic

Sieve Technique applies to problems where we are interested in finding a single item from a larger set of ______ Select correct option:

<mark>n items</mark>

phases pointers constant

Question # 9 of 10 (Start time: 07:45:36 AM) Total Marks: 1 In Sieve Technique we do not know which item is of interest Select correct option:

<mark>True</mark>

False

How much time merge sort takes for an array of numbers? Select correct option: T(n^2) T(n) T(log n) T(n log n)

For the heap sort we store the tree nodes in Select correct option: level-order traversal in-order traversal

pre-order traversal post-order traversal

Sorting is one of the few problems where provable _____ bonds exits on how fast we can sort, Select correct option: upper lower average log n single item from a larger set of ______ Select correct option: n items

phases

pointers constant

A heap is a left-complete binary tree that conforms to the ______

Select correct option: increasing order only decreasing order only heap order (log n) order

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as, Select correct option:

T(n) T(n / 2) <mark>log n</mark> n / 2 + n / 4

The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,

Select correct option:

divide-and-conquer decrease and conquer

greedy nature

2-dimension Maxima

The sieve technique works in _____ as follows

Select correct option:

<mark>phases</mark>

numbers integers routines For the Sieve Technique we take time Select correct option:

<mark>T(nk)</mark>

T(n / 3) n^2 n/3

In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent ______ series in the analysis, linear arithmetic geometric exponent

Analysis of Selection algorithm ends up with, Select correct option:

T(n) T(1 / 1 + n) T(n / 2) T((n / 2) + n)

Quiz Start Time: 07:23 PM Time Left 90 sec(s) Question # 1 of 10 (Start time: 07:24:03 PM) Total M a r k s: 1 In in-place sorting algorithm is one that uses arrays for storage : Select correct option: An additional array No additional array Both of above may be true according to algorithm

More than 3 arrays of one dimension.

Time Left 89 sec(s) Question # 2 of 10 (Start time: 07:25:20 PM) Total M a r k s: 1 Which sorting algorithn is faster : Select correct option: O(n^2) O(nlogn) O(n+k) O(n^3) In stable sorting algorithm: Select correct option: One array is used In which duplicating elements are not handled. More then one arrays are required. Duplicating elements remain in same relative posistion after sorting.

Counting sort has time complexity: Select correct option: O(n) O(n+k)

O(k) O(nlogn)

Counting sort is suitable to sort the elements in range 1 to k: Select correct option: K is large K is small K may be large or small None Memorization is : Select correct option: To store previous results for further use. To avoid unnecessary repetitions by writing down the results of recursive calls and looking them again if needed later To make the process accurate. None of the above

The running time of quick sort depends heavily on the selection of Select correct option: No of inputs Arrangement of elements in array Size o elements Pivot elements

Which may be stable sort: Select correct option: Bubble sort Insertion sort Both of above

In Quick sort algorithm, constants hidden in T(n lg n) are Select correct option: Large Medium Not known small

Quick sort is Select correct option: Stable and In place Not stable but in place Stable and not in place Some time in place and send some time stable

For the Sieve Technique we take time T(nk) T(n / 3) n^2

n/3

The sieve technique is a special case, where the number of sub problems is just Select correct option:

```
5
Many
<mark>1</mark>
Few
```

The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of, Select correct option: divide-and-conquer decrease and conquer greedy nature 2-dimension Maxima

Quick sort is Select correct option: Stable and In place Not stable but in place Stable and not in place

Some time in place and send some time stable

Memoization is : Select correct option: To store previous results for further use. To avoid unnecessary repetitions by writing down the results of recursive calls and looking them again if needed later To make the process accurate. None of the above

One Example of in place but not stable sort is Quick Heap Merge Bubble

The running time of quick sort depends heavily on the selection of Select correct option: No of inputs Arrangement of elements in array Size o elements Pivot elements

Question # 9 of 10 (Start time: 07:39:07 PM) Total M a r k s: 1 In Quick sort algorithm,constants hidden in T(n lg n) are Select correct option: Large Medium Not known Small

Cs502 solved mcqs mega file for papers

1. For the sieve technique we solve the problem,

□ recursively

- □ mathematically
- □ precisely
- □ accurately
- 2. We do sorting to,
- □ keep elements in random positions
- L keep the algorithm run in linear order
- □ keep the algorithm run in (log n) order
- □ keep elements in increasing or decreasing order

3. The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,

□ divide-and-conquer

- □ decrease and conquer
- □ greedy nature
- 2-dimension Maxima
- 4. In Sieve Technique we donot know which item is of interest
- 🗆 True
- □ False

5. In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,

- □ T(n)
- □ T(n / 2)
- 🗆 log n
- 🗆 n / 2 + n / 4
- 6. Divide-and-conquer as breaking the problem into a small number of
- □ pivot
- □ Sieve

□ smaller sub problems

- □ Selection
- 7. A heap is a left-complete binary tree that conforms to the _____
- □ increasing order only

□ decreasing order only

□ heap order

- □ (log n) order
- 8. Slow sorting algorithms run in,
- □ T(n^2)

□ T(n)

□ T(log n)

🗆 T(n log n)

9. One of the clever aspects of heaps is that they can be stored in arrays without using any ______.

□ pointers

 \Box constants

 \Box variables

□ functions

10. Sorting is one of the few problems where provable ______ bonds exits on how fast we can sort,

- □ upper
- □ average
- \Box log n
- $\Box 2_{nd}$
- 11. For the sieve technique we solve the problem,
- \Box mathematically
- □ precisely
- □ accurately

□ recursively

12. Sieve Technique can be applied to selection problem?

🗆 true

□ false

13. How much time merge sort takes for an array of numbers?

- □ (n^2)
- □ T(n)
- □ T(log n)

🗆 T(n log n)

14. For the Sieve Technique we take time

□ **T(nk)**

□ T(n / 3)

□ n^2

□ n/3

15. Heaps can be stored in arrays without using any pointers; this is due to the ______ nature of the binary tree,

□ left-complete

□ right-complete

□ tree nodes

□ tree leaves

16. How many elements do we eliminate in each time for the Analysis of Selection algorithm?

🗆 n / 2 elements

□ (n / 2) + n elements

- □ n / 4 elements
- □ 2 n elements
- 17. We do sorting to,
- $\hfill\square$ keep elements in random positions
- L keep the algorithm run in linear order
- □ keep the algorithm run in (log n) order

□ keep elements in increasing or decreasing order

- 18. In which order we can sort?
- $\hfill\square$ increasing order only
- □ decreasing order only

□ increasing order or decreasing order

- \Box both at the same time
- 19. A heap is a left-complete binary tree that conforms to the _____
- $\hfill\square$ increasing order only

□ decreasing order only

□ heap order

□ (log n) order

20. In the analysis of Selection algorithm, we make a number of passes, in

fact it could be as many as,

□ T(n)

🗆 T(n / 2)

🗆 log n

🗆 n / 2 + n / 4

21. A heap is a left-complete binary tree that conforms to the _____

 $\hfill\square$ increasing order only

□ decreasing order only

□ heap order

□ (log n) order

22. How much time merge sort takes for an array of numbers?

□ T(n^2)

□ T(n)

🗆 T(log n)

□ T(n log n)

23. One of the clever aspects of heaps is that they can be stored in arrays without using any ______.

□ pointers

□ constants

□ variables

□ functions

24. n the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent ______ series in the analysis,

🗆 linear

□ arithmetic

geometric

□ exponent

25. Sieve Technique applies to problems where we are interested in finding a single item from a larger set of _____

🗆 n items

- phases
- pointers
- □ constant

26. A (an) _____ is a left-complete binary tree that conforms to the heap order □ heap □ binary tree \Box binary search tree \Box array 27. The sieve technique works in _____ as follows \Box phases □ numbers \Box integers □ routines 28. For the sieve technique we solve the problem, □ recursively □ mathematically □ precisely \Box accurately 29. For the heap sort, access to nodes involves simple operations. arithmetic \Box binary □ algebraic □ logarithmic 30. The analysis of Selection algorithm shows the total running time is indeed _____in n,\ □ arithmetic □ geometric □ linear □ orthogonal Quiz Start Time: 07:39 AM Time Left 32 sec(s) Question # 1 of 10 (Start time: 07:39:23 AM) Total Marks: 1 For the sieve technique we solve the problem, Select correct option:

 \Box recursively

□ mathematically
□ precisely
 accurately Quiz Start Time: 07:39 AM Time Left 9 sec(s) Question # 2 of 10 (Start time: 07:40:32 AM) Total Marks: 1 For the heap sort, access to nodes involves simple operations. Select correct option:
□ arithmetic
□ binary
□ algebraic
 logarithmic Quiz Start Time: 07:39 AM Time Left 76 sec(s) Question # 3 of 10 (Start time: 07:41:58 AM) Total Marks: 1 We do sorting to, Select correct option:
\Box keep elements in random positions
\Box keep the algorithm run in linear order
\Box keep the algorithm run in (log n) order
 keep elements in increasing or decreasing order Quiz Start Time: 07:39 AM Time Left 60 sec(s) Question # 4 of 10 (Start time: 07:42:18 AM) Total Marks: 1 One of the clever aspects of heaps is that they can be stored in arrays without using any Select correct option:
□ pointers
□ constants
 variables Quiz Start Time: 07:39 AM Time Left 69 sec(s) Question # 5 of 10 (Start time: 07:42:55 AM) Total Marks: 1

A (an) ______ is a left-complete binary tree that conforms to the heap order

Select correct option:

□ heap

□ binary tree

 \Box binary search tree

⊔ array
Quiz Start Time: 07:39 AM Time Left 47
Question # 6 of 10 (Start time: 07:43:24 AM) Total Marks: 1
The analysis of Selection algorithm shows the total running time is indeedin n,
Select correct option:
□ arithmetic
Iinear
orthogonal
orthogonal Quiz Start Time: 07:39 AM
□ orthogonal Quiz Start Time: 07:39 AM Time Left 43
□ orthogonal Quiz Start Time: 07:39 AM Time Left 43 sec(s)
 □ orthogonal Quiz Start Time: 07:39 AM Time Left 43 sec(s) Question # 7 of 10 (Start time: 07:44:11 AM) Total Marks: 1 Sieve Technique applies to problems where we are interested in finding a single item from a larger set of Select correct option:

□ phases

 \Box pointers

□ constant

Quiz Start Time: 07:39 AM Time Left 68 sec(s) Question # 8 of 10 (Start time: 07:45:06 AM) Total Marks: 1 Divide-and-conquer as breaking the problem into a small number of Select correct option:

□ pivot

□ Sieve

□ smaller sub problems

 \Box Selection

Quiz Start Time: 07:39 AM Time Left 57

```
sec(s)
Question # 9 of 10 ( Start time: 07:45:36 AM ) Total Marks: 1
In Sieve Technique we do not know which item is of interest
Select correct option:
```

🗆 True

False
 Quiz Start Time: 07:39 AM
 Time Left 24
 sec(s)
 Question # 10 of 10 (Start time: 07:46:17 AM) Total Marks: 1
 How much time merge sort takes for an array of numbers?
 Select correct option:

□ T(n^2)

□ T(n)

 \Box T(log n)

🗆 T(n log n)

Quiz Start Time: 07:48 AM sec(s) Question # 1 of 10 (Start time: 07:48:31 AM) Total Marks: 1 For the heap sort we store the tree nodes in Select correct option:

Ievel-order traversal

□ in-order traversal

□ pre-order traversal

□ post-order traversal

Quiz Start Time: 07:48 AM
Time Left 85
sec(s)
Question # 2 of 10 (Start time: 07:48:53 AM) Total Marks: 1
One of the clever aspects of heaps is that they can be stored in arrays without
using any
Select correct option:
pointers
□ constants

variables

□ functions Quiz Start Time: 07:48 AM Time Left 41 sec(s) Question # 3 of 10 (Start time: 07:49:03 AM) Total Marks: 1 Sorting is one of the few problems where provable _____ bonds exits on how fast we can sort, Select correct option:

□ upper

□ average

log n
Quiz Start Time: 07:48 AM
Time Left 87
sec(s)
Question # 4 of 10 (Start time: 07:49:59 AM) Total Marks: 1
A (an) ______ is a left-complete binary tree that conforms to the heap order
Select correct option:

□ heap

□ binary tree

 \Box binary search tree

□ array

Quiz Start Time: 07:48 AM Time Left 86 sec(s) Question # 5 of 10 (Start time: 07:50:09 AM) Total Marks: 1 Sieve Technique applies to problems where we are interested in finding a single item from a larger set of ______ Select correct option:

🗆 n items

□ phases

□ pointers

□ constant

Quiz Start Time: 07:48 AM

Time Left 86

sec(s)

Question # 6 of 10 (Start time: 07:50:20 AM) Total Marks: 1 How much time merge sort takes for an array of numbers? Select correct option:

□ T(n^2)

□ T(n)

 \Box T(log n)

🗆 T(n log n)

Quiz Start Time: 07:48 AM Time Left 73 sec(s) Question # 7 of 10 (Start time: 07:50:36 AM) Total Marks: 1 A heap is a left-complete binary tree that conforms to the Select correct option: □ increasing order only □ decreasing order only heap order \Box (log n) order Quiz Start Time: 07:48 AM Time Left 62 sec(s) Question # 8 of 10 (Start time: 07:51:04 AM) Total Marks: 1 In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as, Select correct option: \Box T(n) \Box T(n / 2) 🗆 log n □ n/2+n/4 Quiz Start Time: 07:48 AM Time Left 61 sec(s) Question # 9 of 10 (Start time: 07:51:41 AM) Total Marks: 1 The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of, Select correct option: □ divide-and-conquer □ decrease and conquer □ greedy nature 2-dimension Maxima Quiz Start Time: 07:48 AM Time Left 83 sec(s) Question # 10 of 10 (Start time: 07:52:17 AM) Total Marks: 1 The analysis of Selection algorithm shows the total running time is indeed in n, Select correct option:

□ arithmetic

geometric
 orthogonal Quiz Start Time: 07:53 AM Time Left 54 sec(s) Question # 1 of 10 (Start time: 07:53:11 AM) Total Marks: 1 The sieve technique works in as follows Select correct option:
 □ routines Quiz Start Time: 07:53 AM Time Left 86 sec(s) Question # 2 of 10 (Start time: 07:53:53 AM) Total Marks: 1 Sorting is one of the few problems where provable bonds exits on how fast we can sort, Select correct option: □ upper
 □ log n Quiz Start Time: 07:53 AM Time Left 81 sec(s) Question # 3 of 10 (Start time: 07:54:01 AM) Total Marks: 1 In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as, Select correct option: □ T(n)
🗆 log n
\Box n / 2 + n / 4 Quiz Start Time: 07:53 AM Time Left 24 sec(s) Question # 4 of 10 (Start time: 07:54:16 AM) Total Marks: 1 For the Sieve Technique we take time Select correct option:

□ **T(nk)**

□ T(n / 3)

□ n^2

□ n/3

Quiz Start Time: 07:53 AM Time Left 87 sec(s) Question # 5 of 10 (Start time: 07:55:31 AM) Total Marks: 1 A (an) ______ is a left-complete binary tree that conforms to the heap order Select correct option:

□ heap

 \Box binary tree

 \Box binary search tree

□ array

Quiz Start Time: 07:53 AM Time Left 86 sec(s) Question # 6 of 10 (Start time: 07:55:40 AM) Total Marks: 1 For the heap sort we store the tree nodes in Select correct option:

Ievel-order traversal

□ in-order traversal

□ pre-order traversal

□ post-order traversal

Quiz Start Time: 07:53 AM

Time Left 58

sec(s)

Question # 7 of 10 (Start time: 07:55:51 AM) Total Marks: 1

In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent ______ series in the analysis, Select correct option:

Select correct option:

🗆 linear

□ arithmetic

□ geometric

exponent
 Quiz Start Time: 07:53 AM
 Time Left 85

sec(s) Question # 8 of 10 (Start time: 07:56:30 AM) Total Marks: 1 One of the clever aspects of heaps is that they can be stored in arrays without using any Select correct option: pointers constants variables □ functions Quiz Start Time: 07:53 AM Time Left 12 sec(s) Question # 9 of 10 (Start time: 07:56:41 AM) Total Marks: 1 Analysis of Selection algorithm ends up with, Select correct option: □ **T(n)** $\Box T(1 / 1 + n)$ \Box T(n / 2) $\Box T((n / 2) + n)$ Quiz Start Time: 07:53 AM Time Left 76 sec(s) Question # 10 of 10 (Start time: 07:58:12 AM) Total Marks: 1 The analysis of Selection algorithm shows the total running time is indeed in n, Select correct option: □ arithmetic □ geometric Iinear orthogonal Question No: 1 (Marks: 1) - Please choose one An optimization problem is one in which you want to find, Not a solution

- An algorithm
 Coord colution
- Good solution
- The best solution

http://vustudents.ning.com

Question No: 2 (Marks: 1) - Please choose one

Although it requires more complicated data structures, Prim's algorithm for a minimum spanning tree is better than Kruskal's when the graph has a large number of vertices.

- ► True
- ► False

Question No: 3 (Marks: 1) - Please choose one

If a problem is in NP, it must also be in P.

- ► True
- ► False

unknown

Question No: 4 (Marks: 1) - Please choose one

What is generally true of Adjacency List and Adjacency Matrix representations of graphs?

► Lists require less space than matrices but take longer to find the weight of an edge (v1,v2)

• Lists require less space than matrices and they are faster to find the weight of an edge (v1,v2)

► Lists require more space than matrices and they take longer to find the weight of an edge (v1,v2)

Lists require more space than *matrices* but are faster to find the weight of an edge (v1,v2)

Question No: 5 (Marks: 1) - Please choose one

If a graph has v vertices and e edges then to obtain a spanning tree we have to delete

- ► v edges.
- \blacktriangleright v e + 5 edges
- v + e edges.
- ► None of these

Question No: 6 (Marks: 1) - Please choose one

Maximum number of vertices in a Directed Graph may be |V2|

- ► True
- ► False

Question No: 7 (Marks: 1) - Please

choose one

The Huffman algorithm finds a (n) ______ solution.

- Optimal
- Non-optimal
- ► Exponential
- Polynomial

Question No: 8 (Marks: 1) - Please choose one

The Huffman algorithm finds an exponential solution

- ► True
- ► False

Question No: 9 (Marks: 1) - Please choose one

The Huffman algorithm finds a polynomial solution

- ► True
- ► False

Question No: 10 (Marks: 1) - Please choose one

The greedy part of the Huffman encoding algorithm is to first find two nodes with **larger** frequency.

► True

► False

Question No: 11 (Marks: 1) - Please choose one

The codeword assigned to characters by the Huffman algorithm have the property that no codeword is the postfix of any other.

- ► True
- ► False

Question No: 12 (Marks: 1) - Please choose one

Huffman algorithm uses a greedy approach to generate a postfix code T that minimizes the expected length B (T) of the encoded string.

- ► True
- ► False

Question No: 13 (Marks: 1) - Please choose one

Shortest path problems can be solved efficiently by modeling the road map as a graph.

- ► True
- ► False

Question No: 14 (Marks: 1) - Please

choose one

Dijkestra's single source shortest path algorithm works if all edges weights are non-negative and there are negative cost cycles.

- ► True
- ► False

Question No: 15 (Marks: 1) - Please choose one

Bellman-Ford allows negative weights edges and negative cost cycles.

- ► True
- ► False

Question No: 16 (Marks: 1) - Please choose one

The term "coloring" came form the original application which was in architectural design.

- ► True
- ► False

Question No: 17 (Marks: 1) - Please choose one

In the clique cover problem, for two vertices to be in the same group, they must be adjacent to each other.

- ► True
- ► False

Question No: 18 (Marks: 1) - Please choose one

Dijkstra's algorithm is operates by maintaining a subset of vertices

- ► True
- ► False

Question No: 19 (Marks: 1) - Please choose one

The difference between Prim's algorithm and Dijkstra's algorithm is that Dijkstra's algorithm uses a different key.

- ► True
- ► False

Question No: 20 (Marks: 1) - Please choose one

Consider the following adjacency list:

Which of the following graph(s) describe(s) the above adjacency list?

- •

Question No: 21 (Marks: 1) - Please choose one

We do sorting to,

- ► keep elements in random positions
- keep the algorithm run in linear order
- keep the algorithm run in (log n) order
- ► keep elements in increasing or decreasing order

Question No: 22 (Marks: 1) - Please choose one

After partitioning array in Quick sort, pivot is placed in a position such that

Values smaller than pivot are on left and larger than pivot are on right

► Values larger than pivot are on left and smaller than pivot are on right

Pivot is the first element of array

Pivot is the last element of array

Question No: 23 (Marks: 1) - Please choose one

Merge sort is stable sort, but not an in-place algorithm http://vustudents.ning.com

- ► True
- ► False

Question No: 24 (Marks: 1) - Please choose one

In counting sort, once we know the ranks, we simply _____ numbers to their final positions in an output array.

- Delete
- ► copy
- Mark
- ► arrange

Question No: 25 (Marks: 1) - Please choose one

Dynamic programming algorithms need to store the results of intermediate sub-problems. http://vustudents.ning.com

- ► True
- ► False

Question No: 26 (Marks: 1) - Please choose one

A p × q matrix A can be multiplied with a q × r matrix B. The result will be a p × r matrix C. There are (p \cdot r) total entries in C and each takes

____ to compute.

- ► O (q)
- ► O (1)
- ► O (n₂)
- ► O (n₃)

Quiz Start Time: 06:18 PM Time Left 55

sec(s) Question # 1 of 10 (Start time: 06:18:58 PM) Total Marks: 1 We do sorting to, Select correct option: keep elements in random positions keep the algorithm run in linear order keep the algorithm run in (log n) order keep elements in increasing or decreasing order Quiz Start Time: 06:18 PM Time Left 62 sec(s) Question # 2 of 10 (Start time: 06:19:38 PM) Total Marks: 1 Heaps can be stored in arrays without using any pointers; this is due to the nature of the binary tree, Select correct option: left-complete right-complete tree nodes tree leaves Quiz Start Time: 06:18 PM Time Left 77 sec(s) Question # 3 of 10 (Start time: 06:20:18 PM) Total Marks: 1 Sieve Technique can be applied to selection problem? Select correct option: True False Quiz Start Time: 06:18 PM Time Left 74 sec(s) Question # 4 of 10 (Start time: 06:21:10 PM) Total Marks: 1 A heap is a left-complete binary tree that conforms to the Select correct option: increasing order only decreasing order only heap order (log n) order Quiz Start Time: 06:18 PM Time Left 77 sec(s) Question # 5 of 10 (Start time: 06:21:39 PM) Total Marks: 1 A (an) ______ is a left-complete binary tree that conforms to the heap order Select correct option: heap binary tree binary search tree array Quiz Start Time: 06:18 PM Time Left 72 sec(s) Question # 6 of 10 (Start time: 06:22:04 PM) Total Marks: 1

Divide-and-conquer as breaking the problem into a small number of Select correct option: pivot Sieve smaller sub problems Selection Quiz Start Time: 06:18 PM Time Left 48 sec(s) Question # 7 of 10 (Start time: 06:22:40 PM) Total Marks: 1 In Sieve Technique we do not know which item is of interest Select correct option: True False Quiz Start Time: 06:18 PM Time Left 34 sec(s) Question # 8 of 10 (Start time: 06:23:26 PM) Total Marks: 1 The recurrence relation of Tower of Hanoi is given below $T(n)=\{1 \text{ if } n=1\}$ and 2T(n-1) if n > 1 In order to move a tower of 5 rings from one peg to another, how many ring moves are required? Select correct option: 16 10 32 31 (yeh just tukka hai) Quiz Start Time: 06:18 PM Time Left 36 sec(s) Question # 9 of 10 (Start time: 06:24:44 PM) Total Marks: 1 In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent ______ series in the analysis, Select correct option: linear arithmetic geometric (yeh b gup hi lugti hai) exponent Quiz Start Time: 06:18 PM Time Left 76 sec(s) Question # 10 of 10 (Start time: 06:25:43 PM) Total Marks: 1 For the heap sort, access to nodes involves simple _____ operations. Select correct option: arithmetic binary algebraic logarithmic (bongi hai...) Quiz Start Time: 06:18 PM Time Left 55 sec(s)

Question # 1 of 10 (Start time: 06:18:58 PM) Total Marks: 1 We do sorting to. Select correct option: keep elements in random positions keep the algorithm run in linear order keep the algorithm run in (log n) order keep elements in increasing or decreasing order Start Time: 06:18 PM Time Left 62 sec(s) Question # 2 of 10 (Start time: 06:19:38 PM) Total Marks: 1 Heaps can be stored in arrays without using any pointers; this is due to the nature of the binary tree, Select correct option: left-complete right-complete tree nodes tree leaves Quiz Start Time: 06:18 PM Time Left 77 sec(s) Question # 3 of 10 (Start time: 06:20:18 PM) Total Marks: 1 Sieve Technique can be applied to selection problem? Select correct option: True False Question # 4 of 10 (Start time: 06:21:10 PM) Total Marks: 1 A heap is a left-complete binary tree that conforms to the Select correct option: increasing order only decreasing order only heap order (log n) order MC090406557 : Nadia Parveen Quiz Start Time: 06:18 PM Time Left 77 sec(s) Question # 5 of 10 (Start time: 06:21:39 PM) Total Marks: 1 A (an) ______ is a left-complete binary tree that conforms to the heap order Select correct option: heap binary tree binary search tree array Quiz Start Time: 06:18 PM Time Left 72 sec(s) Question # 6 of 10 (Start time: 06:22:04 PM) Total Marks: 1

Divide-and-conquer as breaking the problem into a small number of Select correct option: pivot Sieve smaller sub problems Selection Quiz Start Time: 06:18 PM Time Left 48 sec(s) Question # 7 of 10 (Start time: 06:22:40 PM) Total Marks: 1 In Sieve Technique we do not know which item is of interest Select correct option: True False Quiz Start Time: 06:18 PM Time Left 34 sec(s) Question # 8 of 10 (Start time: 06:23:26 PM) Total Marks: 1 The recurrence relation of Tower of Hanoi is given below $T(n)=\{1 \text{ if } n=1\}$ and 2T(n-1) if n > 1 In order to move a tower of 5 rings from one peg to another, how many ring moves are required? Select correct option: 16 10 32 31 Quiz Start Time: 06:18 PM Time Left 36 sec(s) Question # 9 of 10 (Start time: 06:24:44 PM) Total Marks: 1 In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent ______ series in the analysis, Select correct option: linear arithmetic geometric exponent Quiz Start Time: 06:18 PM Time Left 76 sec(s) Question # 10 of 10 (Start time: 06:25:43 PM) Total Marks: 1 For the heap sort, access to nodes involves simple _____ operations. Select correct option: arithmetic binary algebraic logarithmic Question # 1 of 10 (Start time: 10:02:41 PM) Total Marks: 1 For the sieve technique we solve the problem,

Select correct option: recursively mathematically precisely accurately The sieve technique works in ______as follows Select correct option: phases numbers integers routines Slow sorting algorithms run in, Select correct option: T(n^2) T(n) T(log n) A (an) _____ is a left-complete binary tree that conforms to the heap order Select correct option: heap binary tree binary search tree array In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent ______ series in the analysis, Select correct option: linear arithmetic geometric exponent In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as, Select correct option: T(n) T(n / 2) log n n/2 + n/4The sieve technique is a special case, where the number of sub problems is just Select correct option: 5 many 1 few In which order we can sort? Select correct option:

increasing order only decreasing order only increasing order or decreasing order both at the same time The recurrence relation of Tower of Hanoi is given below $T(n)=\{1 \text{ if } n=1\}$ and 2T(n-1) if n > 1 In order to move a tower of 5 rings from one peg to another, how many ring moves are required? Select correct option: 16 10 32 31 Analysis of Selection algorithm ends up with, Select correct option: T(n) T(1 / 1 + n)T(n / 2)T((n / 2) + n)Last message received on 10/13 at 12:43 AM Khanjee: We do sorting to, Select correct option: keep elements in random positions keep the algorithm run in linear order keep the algorithm run in (log n) order keep elements in increasing or decreasing order Khanjee: Divide-and-conquer as breaking the problem into a small number of Select correct option: pivot Sieve smaller sub problems Selection The analysis of Selection algorithm shows the total running time is indeed in n, Select correct option: arithmetic geometric linear orthogonal How many elements do we eliminate in each time for the Analysis of Selection algorithm? Select correct option: n / 2 elements (n/2) + n elements n / 4 elements 2 n elements Sieve Technique can be applied to selection problem?

Select correct option: True For the heap sort we store the tree nodes in Select correct option: level-order traversal in-order traversal pre-order traversal post-order traversal Question No: 1 (Marks: 1) - Please choose one Random access machine or RAM is a/an Machine build by Al-Khwarizmi Mechanical machine Electronics machine Mathematical model Question No: 2 (Marks: 1) - Please choose one is a graphical representation of an algorithm \blacktriangleright notation Inotation Flowchart Asymptotic notation Question No: 3 (Marks: 1) - Please choose one A RAM is an idealized machine with ______ random-access memory. ► 256MB ► 512MB an infinitely large ▶ 100GB Question No: 4 (Marks: 1) - Please choose one What type of instructions Random Access Machine (RAM) can execute?

Choose best answer

- Algebraic and logic
- Geometric and arithmetic
- Arithmetic and logic
- Parallel and recursive

Question No: 5 (Marks: 1) - Please choose one

What will be the total number of max comparisons if we run brute-force maxima algorithm with n elements? http://vustudents.ning.com

► O(log*n*)

```
\blacktriangleright O(n)
\blacktriangleright O(n \log n)
\blacktriangleright O(n_2)
Question No: 7 (Marks: 1) - Please choose one
Consider the following code:
For(j=1; j<n;j++)
For(k=1; k<15;k++)
For(l=5; l<n; l++)
{
Do_something_constant();
}
What is the order of execution for this code.
► O(n)
\blacktriangleright O(n_3)
\blacktriangleright O(n_2 \log n)
► O(n<sub>2</sub>)
Question No: 8 (Marks: 1) - Please choose one
Consider the following Algorithm:
Factorial (n){
if (n=1)
return 1
else
return (n * Factorial(n-1))
{
Recurrence for the following algorithm is:
► T(n) = T(n-1) +1
► T(n) = nT(n-1) +1
► T(n)= T(n-1) +n
► T(n)=T(n(n-1)) +1
Question No: 9 (Marks: 1) - Please choose one
What is the total time to heapify?
► O(log n)
\blacktriangleright O(n log n)
\blacktriangleright O(n<sub>2</sub> log n)
\blacktriangleright O(log<sub>2</sub> n)
Question No: 10 (Marks: 1) - Please choose one
When we call heapify then at each level the comparison performed takes
time
► It will take \Theta (1)
Time will vary according to the nature of input data
It can not be predicted
lt will take \Theta (log n)
Question No: 11 (Marks: 1) - Please choose one
```

In Quick sort, we don't have the control over the sizes of recursive calls

- True
- False
- Less information to decide

► Either true or false

Question No: 12 (Marks: 1) - Please choose one

Is it possible to sort without making comparisons?

Yes

► No

Question No: 13 (Marks: 1) - Please choose one

If there are Θ (n₂) entries in edit distance matrix then the total running time is

- ► Θ (1)
- ► (n₂)
- ► Θ (n)
- Θ (n log n)

Question No: 14 (Marks: 1) - Please choose one

For Chain Matrix Multiplication we can not use divide and conquer approach because,

We do not know the optimum k

We use divide and conquer for sorting only

- ▶ We can easily perform it in linear time
- Size of data is not given

Question No: 15 (Marks: 1) - Please choose one

The Knapsack problem belongs to the domain of ______

problems.

- Optimization
- ► NP Complete
- Linear Solution
- Sorting

http://vustudents.ning.com

Question No: 16 (Marks: 1) - Please choose one

Suppose we have three items as shown in the following table, and suppose the capacity of the knapsack is 50 i.e. W = 50.

Item Value Weight

1 60 10

2 100 20

3 120 30

The optimal solution is to pick

- Items 1 and 2
- Items 1 and 3
- Items 2 and 3

None of these

Question No: 17 (Marks: 2)

Describe an efficient algorithm to find the *median* of a set of 10₆ integers; it is known that there are fewer than 100 distinct integers in the set

CS502 - Fundamentals of Algorithms			
File Version Update:	(Dated: 28-Nov-2011)		
• MCQs GIGA File	(Done)		
6. My Composed N	ICQs from Lecture 1_	to12 Included	

Current paper of Cs502 Fall 2011

28 november 2011

Mcqs past paper men say koi aik 2 hi tha bs

20 MCQs most about running time and worst case time of algorithms.

8. Worst case for edit distance algorithm? What is the simple change that can change the worst case time ? 5 marks

9. Write Pseudo code for KNAPSACK algorithm? 5 marks

10. Spelling correction in edit distance? 3 marks

Differentiate b/w Bubble sort, insertion sort and selection sort?
 7.marks

9. Average case and worst case time for quick sort? 2 marks

Another Paper,

9. Suggest and describe modifications of the implementation of quick sort that will improve its performance. (05 marks)

10. Complete given cost table. (05 marks)

11. Why do we analyze the average case performance of a randomized algorithm and not its worse case performance. (03 marks) 12. Why value in row of a dynamic programming table of

knapsack is always non-decreasing? (03 marks)

13. How we build heap? (02 marks)

14. Find cost of (A1(A2A3)). (02 marks)

THANKS TO THESE WHO SHARED AND SHARING NOW

Pg No.**3**

Table of Content	
FILE VERSION UPDATE: (DATED: 30-NOV-2011)	1
CURRENT PAPER OF CS502 FALL 2011	2
THANKS TO THISE WHO SHARED AND SHARING NOW	2
TABLE OF CONTENT	3
MCQZ	4
MCQz (Set-1) From Lecture 1 to 12	4
MCQz (Set-2) Lecture wise MCQs	25
MCQz (Set-3)	35
MCQz (Set-4)	36
MCQz (Set-5)	37
MCQz (Set-6)	38
MCQz (Set-7)	39
MCQz (Set-8)	41
MCQz (Set-9)	42
MCQz (Set-10)	44
MCQz (Set-11)	46
MCQz (Set-12)	47
MCQz (Set-13)	51
MCQz (Set-14)	53
MCQz (Set-15)	55
MCQz (Set-16)	56
MCQz (Set-17)	57
MCQz (Set-18)	60
MCQz (Set-19)	62
MCQz (Set-20)	64
MCQz (Set-21)	67
MCQz (Set-22)	68
MCQz (Set-23)	70
MCQz (Set-24)	72
MCQz (Set-26) From 2004 Paper	73
MCQz (Set-27) From 2004 Paper	75
MCQz (Set-28) From 2007 Paper	76

Pg No.**4**

MCQz

MCQz (Set-1) From	m Lecture 1 to 12
This is my Own Cor	npilation from Handouts(Author: Muhammad Ishfaq)
Question No:	1 The word Algorithm comes from the name of the muslim author
	9. Ibne-ul Hasem
	10. Abu Ja'far Mohammad ibn Musa al- Khowarizmi
	11. Jaber Bin Hayan
	12. None
Correct Option : Question No:	 B 2 Abu Ja'far Mohammad ibn Musa al-Khowarizmi was born in the eighth century at Khwarizm (Kheva), in A. Iraq
	B. Uzbekistan
	C. Turkey
Correct Option : Question No:	 B 3 Al-Khwarizmi died C.E A. around 900
	B. around 700
	C. around 840
Correct Option : Question No:	 C 4 Al-Khwarizmi's work was written in a book titled al Kitab al-mukhatasar fi hisab al-jabr wa'l-muqabalah (The Compendious Book on Calculation by Completion and Balancing)
	. False
Correct Option : Question No:	 A 5 An is thus a sequence of computational steps that transform the input into output A. Data Structure B. Data Process
	D. Data 1100000

Pg No.**5**

	C. Algorithm	
	D. none	
Correct Option : Question No:	 C 6 Like a program, an algorithm is a mathematical entity, which is not independent of a specific programming language, machine, or compiler. A. True 	
	B. False	
Correct Option : Question No:	 B 7 of the courses in the computer science program deal with efficient algorithms and data structures, A. None 	
	B. Many	
	C. Some	
Correct Option : Question No:	 B 8 Compilers, operating systems, databases, artificial intelligence, computer graphics and vision, etc. use algorithm. A. False 	
	B. True	
Correct Option : Question No:	 B 9 This course will consist of following major section(s). Select Correct Option 1. The first is on the mathematical tools necessary for the analysis of algorithms. This will focus on asymptotics, summations, recurrences. 2- The second element will deal with one particularly important algorithmic problem: sorting a list of numbers. 3-The third of the course will deal with a collection of various algorithmic problems and solution techniques. 4- Finally we will close this last third with a very brief introduction to the theory of NP-completeness. 	
	A. 1-2	
	В. 1-2-3	
	C. 1-3-4	
		Pg No. 6
--	---	------------------------
8.	A11	
Correct Option : D Question No: 10 NP-comp know migh 9.	elete problem are those for which algority an, but no one knows for sure whether efficien t exist efficient	hms are t solutions
10.	no efficient	-
11.	none	
Correct Option : B Question No: 11 Analyzig resou inclu 9.	algorithms in terms of the amount of computa arces that the algorithm requires. These resour de mostly running time	ational rces
10.	memory	
11.	running time and memory	
12.	none	
Correct Option : C Question No: 12 Ideally th stand 8.	nis model should be a reasonable abstraction o dard generic single-processor machine. We cal RAM Memory ROM Memory	of a l this model
	random access machine or RAM	
Correct Option : C Question No: 13 A RAM A.	is an idealized machine with an infinitely large random-access memory.	
В.	with Instructions are executed one-by-one (there is no parallelism)	
С.	single processor machine	
D.	all	
Correct Option : D Question No: 14 We assum theA.	me that in RAM machine , each basic operation constant time to execut. same	n takes

		В.	different
Correct Option : Question No:	A 15	A poi intege A.	nt p in 2-dimensional space be given by its er coordinates, p = (p.x, p.y) true
Correct Option : Question No:	A 16	B. A point $q.y \le A$. B.	false nt p is not said to be dominated by point q if q.x ≤ p.x and p.y true false
Correct Option : Question No:	A 17	Giver point point A.	a set of n points, P = {p1, p2, , pn} in 2-space a is said to be if it is not dominated by any other in P. maximal
Correct Option : Question No:	A 18	B. C. Brute solvir all po each	mininal average e-force algorithm is defined as ,It is a very general problem- ng technique that consists of systematically enumerating ssible candidates for the solution and checking whether candidate satisfies the problem's statement.s
		A. B.	false true
Correct Option :	В		
Question No:	19 1	There a A.	are no formal rules to the syntax of the pseudo code true
		B.	false
Correct Option : Question No:	A 20 F	rom t	he figure select the correct statement

Correct Option : C

Question No: 21 Worst-case time is the maximum running time over all (legal) inputs of size n is given in figure where I denote an input instance, let |I| denote its length, and let T(I) denote the running time of the algorithm on input I.___

$$T_{worst}(n) = \max_{|I|=n} T(I)$$

- A. false
- B. **true**

Correct Option : B

Question No: 22

is the average running time over all inputs of size n. Let p(I) denote the probability of seeing this input. The average-case time is the weighted sum of running times with weights.____

 $T_{worst}(n) = \max_{|I|=n} T(I)$

- A. Worst-case time
- B. Average-case time
- C. none

Correct Option : B

Question No: 23 When n is large, n^2 term will be much larger than the n term and will dominate the running time.____

- A. true
- B. false

Correct Option : Question No:	A 24 We will say that the worst-case running time is $\Theta(n^2)$. This is
	A. the asymptotic growth rate of the function.
	B. itteration growth rate of the function.
	C. recursive growth rate of the function.
	D. none
Correct Option : Question No:	 A 25 Given a finite sequence of values a1, a2,, an, their sum a1 + a2 + + an is expressed in
	summation notation as (click figure to see) $\sum_{i=1}^{n} a_{i}$
	A. true
	B. false
Correct Option : Question No:	A 26 If c is a constant then (see figure) $\sum_{i=1}^{n} ca_{i} = c \sum_{i=1}^{n} a_{i}$
	$\sum_{i=1}^{n} (u_i + b_i) = \sum_{i=1}^{n} u_i + \sum_{i=1}^{n} b_i$
	A true
	B. false
Correct Option : Question No:	A 27 Formule in figure is $\sum_{i=1}^{n} (a_i + b_i) - \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$
	A. correct
	B. wrong
Correct Option : Question No:	A 28 Figure shows $\sum_{i=1}^{n} i = 1 + 2 + \dots + n$ $= \frac{n(n+1)}{2} = \Theta(n^2)$
	A. Arithmetic series

- B. HArmonic series
- C. Geometric series
- D. none

Correct Option : Ouestion No:	A 29 Figure shows.
	$\sum_{i=1}^{n} i^{2} = 1 + 4 + 9 + \ldots + n^{2}$
	$= 2n^3 + 3n^2 + n = \Theta(n^3)$
	A. Arithmatic series
	B. Quadratic series
	C. Harmonic series
	D. Geometric series
Correct Option : Question No:	B 30 Figure shows and If $0 < x < 1$ then this is $\Theta(1)$, and if $x > 1$
	1, then this is $\Theta(x^n)$.
	$\sum_{i=1}^{N} x_i = i + x + x_1 + \dots + x_n$
	$=\frac{x^{n-1}-1}{x-1}=\Theta(n^2)$
	A. Quadratic series
	B. Arithmatic series
	C. Geometric series
	D. Harmonic series
Correct Option : Question No:	C 31 For $n \ge 0$, figure shows
	$H_n = \sum_{i=1}^{n-1} \frac{1}{i}$
	$=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\approx \ln n$
	A. Geometric series
	B. Quadratic series
	C. Arithmetic series
	D. Harmonic series

Correct Option :

D

Question No: 32 We write out the loops as summations and then solve the

	sum A.	mations true
	В.	false
Correct Option : Question No:	A 33 A poin q.y	nt p is said to dominated by point q if p.x \leq q.x and p.y \leq
	A.	true
Correct Option : Question No:	A 34 We intr	roduced a brute-force algorithm that ran in
	А.	$\Theta(n)$ time
	В.	Θ(n ²) time
	C.	$\Theta(nlogn)$ time
	D.	$\Theta(n^3)$ time
Correct Option : Question No:	B 35 The pro	oblem with the brute-force algorithm is that it uses in pruning out decisions
	A.	intelligence
	В.	no intelligence
Correct Option : Question No:	B 36 This fol	llows from the fact that dominance relation is
	А.	symmetric.
	В.	transitive.
	C.	non-transitive.
Correct Option : Question No: 3	B 7 This appr	roach of solving geometric problems by sweeping a line
	A.	plane sweep.
	В.	brute force.
Correct Option : Question No:	A 38 Sorting A.	g takes time Θ(n)

	Pg No.1	2
B.	Θ(n^2)	
C.	Θ(n log n)	
D.	none	
Correct Option : C Question No: 39 Plane-sw more A.	veep Algorithm, the inner while-loop execute e than n times over the entire course of the algorithm can	
B.	cannot	
Correct Option : B Question No: 40 The ru A.	ntime of entire plane-sweep algorithm is Θ(n log n) true	
B.	false	
Correct Option : A Question No: 41 For n = force A. B.	1, 000, 000, if plane-sweep takes 1 second, the brute- e will take about 14 hours 14 minutes	
Correct Option : A Question No: 42 If n is no fast.	ot very large, then almost any algorithm be	
A.	may	
B.	may be not	
C.	will	
D.	none	
Correct Option : C Question No: 43 Given an that ⊖(g(1 A. B.	by function g(n), we define $\Theta(g(n))$ to be a set of functions asymptotically equivalent to g(n). Formally:(i)) = {f(n) there exist positive constants c_1, c_2 and n_0 such that $0 \le c_1g(n) \le f(n) \le c_2g(n)$ for all $n \ge n_0$ } true false	
Correct Option : A		

Question No: 44 Th	is is written as "f(n) E Θ(g(n))" That is, f(n) and g(n) are asymptotically equivalent. This means that they have essentially the growth rates for large n A. different
	B. same
Correct Option : B	
Question No: 45 Al	given function are all asymptotically equivalent. As n becomes large, the dominant (fastest growing) term is some constant times n^2
	• 4n ² ,
	• $(8n^2 + 2n - 3)$,
	• $(n^2/5 + \sqrt{n} - 10 \log n)$
	• n(n-3)
	A. true
	B. false
Correct Option : A Question No: 46 Lo	wer bound f(n) = $8n^2 + 2n - 3$ grows asymptotically at least as
	A. true
	B. false
Correct Option : A Question No: 47	Upper bound f(n) grows no faster asymptotically than n^2, A. true
	B. false
Correct Option : A Question No: 48	Figure does not show Asymptotic Notation Example A. true
	B. false
Correct Option : B Question No: 49 Th	the is used to state only the asymptotic upper bounds $O(g(n)) = \{f(n) \text{ there exist positive} \\ \text{ constants } c \text{ and } n_c \text{ such that} \\ 0 \le f(n) \le cg(n) \\ \text{ for all } n \ge n_0 \}$

- A. theta notation
- B. O-notation
- C. Ω -notation

Correct Option : Β Question No: 50 The _allows us to state only the asymptotic lower bounds. $\Omega(g(n)) = \{f(n) \mid \text{there exist positive}$ constants ε and n_{ε} such that $0 \leq cg(n) \leq f(n)$ for all $n \geq n_0 \}$ A. Ω -notation В. **O**-notation **Correct Option :** Α Question No: **51** The three notations: $\Theta(g(n)): 0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ $O(g(n)): 0 \le f(n) \le cg(n)$ $\Omega(g(n)):\, 0\leq cg(n)\leq f(n)$ for all $n \ge n_0$ A. true В. false **Correct Option :** А Question No: **52** Limit rule for Θ -notation: $\lim_{n\to\infty}\frac{f(n)}{g(n)}=c,$ Α. true В. false **Correct Option :** А **Question No: 53** The limit rule for O-notation is ____ $\lim_{n\to\infty}\frac{f(n)}{q(n)}=c,$ Α. true Β. false **Correct Option :** Α

Question No: 54 limit rule for Ω -notation:

B. false

Α

Correct Option : Question No: 5

55 Here is a list of common asymptotic running times:

- $\Theta(1)$: Constant time; can't beat it!
- $\Theta(\log n)$: Inserting into a balanced binary tree; time to find an item in a sorted array of length n using binary search.
- $\Theta(n)$: About the fastest that an algorithm can run.
- $\Theta(n \log n)$: Best sorting algorithms.
- $\Theta(n2)$, $\Theta(n3)$: Polynomial time. These running times are acceptable when the exponent of n is small or n is not to large, e.g., $n \le 1000$.
- $\Theta(2n)$, $\Theta(3n)$: Exponential time. Acceptable only if n is small, e.g., $n \le 50$.
- Θ(n!), Θ(nn): Acceptable only for really small n, e.g. n ≤ 20____
 A. true
- B. false

Correct Option : A

Question No: 56 Ancient Roman politicians followed an important principle of good algorithm design known as Divide and Conquer Strategy.____

- A. **true**
- B. false

Correct Option : A

Question No: 57 The main elements to a divide-and-conquer solution are____

- A. Divide: the problem into a small number of pieces
- B. Conquer: solve each piece by applying divide and conquer to it recursively
- C. Combine: the pieces together into a global solution
- D. All of the above.

Correct Option : D

Question No: 58 The merge sort algorithm works by _____

A. (Divide:) split A down the middle into two subsequences, each of size roughly n/2

	В.	(Conquer:) sort each subsequence by calling merge sort recursively on each.
	C.	(Combine:) merge the two sorted subsequences into a single sorted list.
	D.	All of the above.
Correct Option : Question No:	D 59 MER 1 if (2 the 3 q < 4 MB 5 MB 6 MB A.	CGE-SORT(array A, int p, int r) p < r) en - (p + r)/2 ERGE-SORT(A, p, q) // sort A[pq] ERGE-SORT(A, q + 1, r) // sort A[q + 1r] ERGE(A, p, q, r) // merge the two pieces true
Correct Option : Question No:	B. A 60 The sum	false iteration method does not turn the recurrence into a mation
	T(n) = A.	$\begin{cases} 1 & \text{if } n = 1, \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n & \text{otherwise} \end{cases}$ false
	В.	true
Correct Option : Question No:	A 61 Defin elem A.	ne the of an element to be one plus the number of ents that are smaller Rank
	B.	Degree
Correct Option : Question No:	A 62 Thus A.	s, the rank of an element is its final position if the set is sorted .
	В.	unsorted.
	C.	unchanged.
	D.	same
Correct Option : Question No:	A 63 The :	minimum is of rank and the maximum is of rank

	A , 1
	B. 0,n
	C. 1, n
	D. none
Correct Option : Question No:	C 64 Test
	A. Choice I
	B. Choice 2
	C. Choice 3
	D. None
Correct Option : Question No:	 D 65 Floor and ceilings a pain to deal with A. are not
	B. are
	C. sometime
	D. none
Correct Option : Question No:	 B 66 Iteration powerful technique for solving recurrences A. is a not a
	B. might be
	C. is a very
Correct Option : Question No:	 C 67 Merge of two lists of size m/2 to a list of size m takes Θ(m) time, which we will just write as m A. True
	B. False
Correct Option : Question No:	A 68 The figure is a

	n/2 $n/2$ $2(n/2) = nn/4$ $n/4$ $n/4$ $n/4$ $4(n/4) = nlog(n)+1lovels$
	A. Selection sort Recurrence Tree
	B. Merge sort Recurrence Tree
	C. Both
	D. None
Correct Option : Question No:	 A 69 Define the of an element to be one plus the number of elements that are smaller A. degree
	B. rank
	C. frequency
	D. weight
Correct Option : Question No:	 B 70 The rank of an element is its final position if the set is sorted A. true
	B. false
Correct Option : Question No:	 A 71 Consider the set: {5, 7, 2, 10, 8, 15, 21, 37, 41}. The rank of each number is its position in the sorted order. For example, rank of 8 is, one plus the number of elements 8 which is 3 <u>position 1 2 3 4 5 6 7 8 9</u> <u>Number 2 5 7 8 10 15 21 37 41</u> A. 3, equal to B. 4, greater then C. 3, smaller then D. 4, smaller then

Correct Option : Question No:	D 72	Giver outpı	a set A of n distinct numbers and an integer k, $1 \le k \le n$, at the element of A of rank k.This problem is of type
		А.	Merge Sort
		В.	Selection Sort
		C.	Maximal
Correct Option : Question No:	В 73 If	n is c	odd then the median is defined to be element of rank
		А.	n
		В.	n-1
		C.	(n+1)/2
		D.	n/2
Correct Option : Question No:	С 74 W	hen 1 A.	n is even, for median , there are two choices: $n/2$
		В.	(n + 1)/2
		C.	n/2 and $(n + 1)/2$.
		D.	none
Correct Option : Question No:	С 75 М	ediar A.	is are useful as a measures of the of a set mode
		В.	average
		C.	probability
		D.	central tendency
Correct Option : Question No: 7	D 76 Cen	tral t	endency of a set is useful when the distribution of
		value A.	s 1sskewed
		В.	not skewed
		C.	highly skewed

D. straight

Correct Option : C

Question No: 77 The median income in a community is a more meaningful measure than average. Suppose 7 households have monthly incomes 5000, 7000, 2000, 10000, 8000, 15000 and 16000. In sorted order, the incomes are 2000, 5000, 7000, 8000, 10000, 15000, 16000. The median income is 8000; median is element with rank 4: (7 + 1)/2 = 4. The average income is 9000. Suppose the income 16000 goes up to 450,000. The median is still 8000 but the average goes up to 71,000. Clearly, the average is not a good representative of the majority income levels. Above statement is true A. Β. Above statement is false **Correct Option :** Α **78** Sorting requires ______ time____ **Ouestion No:** $\Theta(\log n)$ A. В. $\Theta(n*2 \log n)$ C. $\Theta(n \log n)$ D. $\Theta(n)$ **Correct Option :** С Question No: **79** In particular, is it possible to solve the selections problem in $\Theta(n)$ time? A. no. В. yes. C. yes. However, the solution is far from obvious **Correct Option :** С Question No: 80 A very important special case of divide-and-conquer, which I call the sieve technique.____ false A. В. true **Correct Option :** Β **Question No: 81** We think of divide-and-conquer as breaking the problem into a small number of bigger sub-problems, which are then solved recursively.

A. **true**

	B. false
Correct Option : Question No:	 A 82 The sieve technique is a special case, where the number of subproblems is A. 3
	B. 2
	C. just 1
	D. 0
Correct Option : Question No:	 C 83 In particular "large enough" means that the number of items is at least some fixed constant fraction of n (e.g. n/2, n/3) A. true
	B. false
Correct Option : Question No:	A 84 The following figure shows a partitioned array:
	A. true
	B. false
Correct Option : Question No:	A 85 Sieve example: select 6th smallest element is shown in fig
	A. true
Correct Option : Question No:	 B. false A 86 Ideally, x (pivot) should have a rank that is neither too large or too small. A. true
	B. false

Correct Option : Α **Ouestion No: 87** In sorting, we are given an array A[1..n] of n numbers We are to reorder these elements into increasing (or decreasing) order.____ Α. false В. true **Correct Option :** В **Question No: 88** More generally, A is an array of objects and we sort them based on one of the attributes - the key value._ A. true false B. **Correct Option :** Α **Question No: 89** There are a number of well-known ______ O(n^2) sorting algorithms. A. fast В. slow **Correct Option :** В **Ouestion No: 90** Scan the array. Whenever two consecutive items are found that are out of order, swap them. Repeat until all consecutive items are in order. It is called Insertion sort A. Β. **Bubble sort** C. Selection sort D. none **Correct Option :** В **Question No: 91** Assume that A[1..i – 1] have already been sorted. Insert A[i] into its proper position in this sub array. Create this position by shifting all larger elements to the right. It is called Α. Bubble sort Β. Selection sort C. Merge sort D. none **Correct Option :** D

Question No: 92 Assume that A[1..i – 1] contain the i – 1 smallest elements in sorted order. Find the smallest element in A[i..n] Swap it with

A[i A	It is called	
-		
В	Insertion sort	
C	Merge sort	
D	Bubble sort	
Correct Option : A		
Question No: 93 Assum pro sh A	e that A[1i – 1] have already been sorted. Insert A[i] into per position in this sub array. Create this position by ting all larger elements to the right Selection sort	o its
В	Bubble sort	
C	Merge sort	
D	Insertion sort	
Correct Option : D Question No: 94 In th A	e worst case time run in Θ(n2) Bubble sort	
В	Selection sort	
C	Insertion sort	
D	All of the above	
Correct Option : D Question No: 95 A he A	is a left-complete binary tree that conforms to the p order BST	
В	AVL Tree	
C	Perfect tree	
D	Неар	
Correct Option : D Question No: 96 The he no ke A	up order property stated that in a, for every e X, the key in the parent is smaller than or equal to the in X (max) heap	e
D		

Correct Option : В **Question No: 97** In a ______ heap, the parent has a key larger than or equal both of its children ____ (max) heap A. В. (min) heap **Correct Option :** Α **Question No: 98** Thus the smallest key is in the root in a_____; in the ______ the largest is in the root.____ Α. max heap, min heap В. min heap, max heap C. max heap, max heap D. min heap, min heap **Correct Option :** В **Question No: 99** The number of nodes in a complete binary tree of height h is____ $n = 2^0 + 2^1 + 2^2 + \dots + 2^h = \sum_{i=0}^h 2^i = 2^{h+1} - 1$ A. true false Β. **Correct Option :** А **Question No: 100** h in terms of n is____ $h = (\log(n+1)) - 1 \approx \log n \in \Theta(\log n)$ A. true B. false **Correct Option :** Α **Question No: 101** One of the clever aspects of ______ is that they can be stored in arrays without using any pointers____ lists A. В. BST trees C. heaps **Correct Option :** С **Question No: 102** We store the tree nodes in level-order traversal in heap sort____ A. true

	rg no.
B. false	
Correct Option : A	
Question No: 103 Access to nodes involves simple anumetic operations	3:SHOWH 111
left(i), netume (i, index of left shild of node i	
right(i): returns $2i + 1$ the right child	
parent(i): returns bi/2c, the parent of i.	
A. false	
B. true	
Correct Option · B	
Ouestion No: 104 The root is at position 1 of the array.	
A. true	
B. false	
Correct Option: A	
Question No: 105 There is one principal operation for maintaining the h	ieap
property	
A. Heapify Procedure	
R none	
D. Hone	
Correct Option : A	
Ouestion No: 106 It is called Heapify. (In other books it is sometimes ca	lled sifting
down.)	nou onung
A. true	
B. false	
Correct Option · A	
>	
MCQz (Set-2) Lecture wise MCQs	
Correct Choice : 4 From Lectuer # 1	
3 is a graphical representation of an algorithm	
1. Segma Notation	
2. Thita Notation	
3. Flowchart	

4. Asymptotic notation

Correct Choice : 3 From Lectuer # 2

4 - What will be the total number of max comparisons if we run brute-force maxima algorithm with n elements?

1. n^2

2. n^n/2

3. n

4. n^8

Correct Choice : 1 From Lectuer # 3

5 - function is given like $4n^{4+}$ $5n^{3+n}$ what is the run time of this

1. theata(n^4)

2. theata (n^3)

3. theata(4n^4+ 5n^3)

4. theata(4n^4+ 5n^3)

Correct Choice : 1 From Lectuer # 4

6 - Consider the

following code: For(j=1; j

7 - Execution of the following code

fragment int i = N; while (i > 0)

```
2
```

{ int Sum = 0; int j; for (j = 0; j Sum++; cout

8 - Let us say we have an algorithm that carries out N2 operations for an input of size N. Let us say that a computer takes 1 microsecond (1/1000000 second) to carry out one operation. How long does the algorithm run for an input of size 3000?

1. 90 seconds

2. 9 seconds

3. 0.9 seconds

4. 0.09 seconds

Correct Choice : 2 From Lectuer # 4

9 - The appropriate big thita classification of the given function. f(n) = $4n^2 + 97n + 1000$ is

1. ?(n)

2. O(2^n)

3. O(n^2)

4. $O(n^2 logn)$

Correct Choice : 3 From Lectuer # 4

10 - The appropriate big ? classification of the given function. f(n) = 4n2 + 97n + 1000 is 1. ?(n)

2. $O(2^n)$

3. O(n^2)

4. O(n^2logn)

Correct Choice : 3 From Lectuer # 4

11 - Which sorting algorithm is faster

1. O (n log n)

2. O n^2

3. O (n+k)

4. O n^3

Correct Choice : 3 From Lectuer # 5

12 - If algorithm A has running time 7n^2 + 2n + 3 and algorithm B has running time 2n^2,
then

1. Both have same asymptotic time complexity

2. A is asymptotically greater

3. B is asymptotically greater

4. None of others Correct Choice : 1 From Lectuer # 6 14 - What is the solution to the recurrence $T(n) = T(n/2)+n$.
1. O(logn)
 2. O(n) 3. O(nlogn) 4. O(n^2) Correct Choice : 1 From Lectuer # 8 15 - How much time merge sort takes for an array of numbers? 1. (n^2)
2. T(n)
 4. T(n log n) 4. T(n log n) Correct Choice : 2 From Lectuer # 8 17 - Consider the following Algorithm: Factorial (n){ if (n=1) return 1 else return (n * Factorial(n-1))
Recurrence for the following algorithm is:
1. $T(n) = T(n-1) + 1$ 2. $T(n) = nT(n-1) + 1$ 3. $T(n) = T(n-1) + n$
4. $T(n)=T(n(n-1)) + 1$
Correct Choice : 4 From Lectuer # 9 18 - For the Sieve Technique we take time
1. T(nk) .
2. $1(n / 3) 4$ 3. n^2
4. n/3
Correct Choice : 1 From Lectuer # 10 20 - Sieve Technique applies to problems where we are interested in finding a single item from a larger set of
1. n items
 2. phases 3. pointers 4. constant Correct Choice : 1 From Lectuer # 10 22 - In Sieve Technique we do not know which item is of interest 1. FALSE
2. TRUE
 3. 4. Correct Choice : 2 From Lectuer # 10 23 - For the sieve technique we solve the problem,
2. mathematically
3. accurately
4. precisely Correct Choice : 1 From Lectuer # 10

24 - For the Sieve Technique we take time
1. T(nk)
2. T(n / 3)
3. n^2
4. n/3
Correct Choice : 1 From Lectuer # 10
25 - How many elements do we eliminate in each time for the Analysis of Selection algorithm?
1. n / 2 elements
2. $(n / 2) + n$ elements
3. n / 4 elements
4. n elements
5
Correct Choice : 4 From Lectuer # 10
26 - Sieve Technique applies to problems where we are interested in finding a single
item from a larger set of
1. n items
2. phases
3. pointers
4. constant
Correct Choice : 1 From Lectuer # 10
27 - Sieve Technique can be applied to selection problem?
1. TRUE
2. FALSE
Comment Chains 1 Enous Lostroom # 10
Correct Choice : I From Lectuer # 10
28 - The analysis of Selection algorithm shows the total running time is indeedii
n,
1. arithmetic
2. geometric
3. linear
4. orthogonal
Correct Choice : 3 From Lectuer # 10
29 - The reason for introducing Sieve Technique algorithm is that it illustrates a
very important special case of,
1. divide-and-conquer
2. decrease and conquer
3. greedy nature
4. 2-dimension Maxima
Correct Choice : 1 From Lectuer # 10
30 - The sieve technique works in as follows
1. phases
2. numbers
3. integers
~,
4 routines
4. routines Correct Choice : 1 From Lectuer # 10
4. routines Correct Choice : 1 From Lectuer # 10 31 - The sieve technique works in as follows
 4. routines Correct Choice : 1 From Lectuer # 10 31 - The sieve technique works in as follows

3. 4.

 numbers integers 			
4. routines			
Correct Choice : 1 From Lectuer # 10			
1 been			
2 binary tree			
3 binary search tree			
4. arrav			
Correct Choice : 1 From Lectuer # 11			
34 - For the heap sort, access to nodes involves simple operations.			
1. arithmetic			
2. binary			
3. algebraic			
4. logarithmic			
Correct Choice : 1 From Lectuer # 11			
37 - We do sorting to,			
2. keep elements in random positions			
2. Keep the algorithm run in (log n) order			
A keep elements in increasing or decreasing			
order Correct Choice · 1 From Lectuer # 11			
42 - For the heap sort we store the tree nodes in			
1. level-order traversal			
2. in-order traversal			
3. pre-order traversal			
4. post-order traversal			
Correct Choice : 1 From Lectuer # 11 7			
44 - In the analysis of Selection algorithm, we make a number of passes, in fact it could be as			
many as,			
1. $T(n)$			
2. 1(1 / 2) 2. log n			
4 n / 2 + n / 4			
Correct Choice : 3 From Lectuer # 11			
45 - In the analysis of Selection algorithm we make a number of passes in fact it			
could be as			
many as,			
1. T(n)			
2. T(n / 2)			
3. log n			
4. n / 2 + n / 4			
Correct Choice : 3 From Lectuer # 11			
40 - In which order we can sort?			
2. decreasing order only			
2. utiliasing order or decreasing order			

4. both at the same time

Correct Choice : 3 From Lectuer # 11

47 - One of the clever aspects of heaps is that they can be stored in arrays without using any _____.

1. pointers

2. constants

3. variables

4. functions

Correct Choice : 1 From Lectuer # 11

49 - Slow sorting algorithms run in,

1. O(n^2)

2. O(n)

3. O(log n)

4. O(n log n)

Correct Choice : 1 From Lectuer # 11

50 - What is the total time to heapify?

1. ?(log n)

- 2. ?(n log n) 3. ?(n^2 log n)
- 4. ?(log^2n)

Correct Choice : 1 From Lectuer # 12

-When we call heapify then at each level the comparison performed takes time It will take O (1)

- 1. Time will vary according to the nature of input data
- 2. It can not be predicted

3. It will take O (log n)

4. None of the Given

Correct Choice : 3 From Lectuer # 12

53 - After partitioning array in Quick sort, pivot is placed in a position such that

1. Values smaller than pivot are on left and larger than pivot are on right

- 2. Values larger than pivot are on left and smaller than pivot are on right
- 3. Pivot is the first element of array
- 4. Pivot is the last element of array

Correct Choice : 2 From Lectuer # 13

54 - The running time of quick sort depends heavily on the selection of

- 1. No of inputs
- 2. Arrangement of elements in array
- 3. Size o elements

4. Pivot element

Correct Choice : 4 From Lectuer # 13

55 - In Quick Sort Constants hidden in T(n log n) are

- 1. Large
- 2. Medium

3. Small

4. Not Known

Correct Choice : 3 From Lectuer # 14

9

56 - In Quick Sort Constants hidden in T(n log n)

are 1. Large

2. Medium

3. Small

4. Not Known
Correct Choice : 3 From Lectuer # 14
57 - Is it possible to sort without making comparisons? **1. Yes**2. No

2.

3.

4.

Correct Choice : 1 From Lectuer # 15

58 - Merge sort is stable sort, but not an in-place algorithm

1. TRUE

2. FALSE

3. 4

Correct Choice : 1 From Lectuer # 15

59 - In counting sort, once we know the ranks, we simply _____ numbers to their final positions in an output array.

1. Delete

- 2. Copy
- 3. Mark
- 4. arrange
- Correct Choice : 2 From Lectuer # 15

60 - An in place sorting algorithm is one that uses ____ arrays for storage

- 1. Two dimensional arrays
- 2. More than one array

3. No Additional Array

4. None of the above

Correct Choice : 3 From Lectuer # 15

61 - Continuation/counting sort is suitable to sort the elements in range 1 to ${\bf k}$

- 1. K is Large
- 2. K is not known
- 3. K may be small or large

4. K is small

10

Correct Choice : 4 From Lectuer # 15

62 - In stable sorting algorithm.

1. If duplicate elements remain in the same relative position after sorting

- 2. One array is used
- 3. More than one arrays are required
- 4. Duplicating elements not handled

Correct Choice : 1 From Lectuer # 15

63 - One example of in place but not stable algorithm is

1. Merger Sort

2. Quick Sort

3. Continuation Sort

4. Bubble Sort

Correct Choice : 2 From Lectuer # 15

64 - One example of in place but not stable algorithm is

1. Merger Sort

2. Quick Sort

3. Continuation Sort

4. Bubble Sort

Correct Choice : 2 From Lectuer # 15

65 - One of the clever aspects of heaps is that they can be stored in arrays without using any ______.

1. pointers

2. constants

- 3. variables
- 4. functions
- Correct Choice : 1
- 66 Quick sort is
- 1. Stable & in place
- 2. Not stable but in place

3. Stable but not in place

- 4. Some time stable & some times in place
- Correct Choice : 3 From Lectuer # 15

67 - Quick sort is

1. Stable & in place

2. Not stable but in place

- 3. Stable but not in place
- 4. Some time stable & some times in place
- Correct Choice : 2 From Lectuer # 15
- 68 Which may be a stable sort?
- 1. Merger
- 2. Insertion

3. Both above

4. None of the above

Correct Choice : 3 From Lectuer # 15

69 - Which of the following sorting algorithms is stable?

- (i) Merge sort,
- (ii) Quick sort,
- (iii) Heap sort,
- (iv) Counting Sort.

1. Only i

- 2. Only ii
- 3. Both i and ii
- 4. Both iii and iv

Correct Choice : 1 From Lectuer # 15

70 - Which of the following sorting algorithms is stable?

- (i) Merge sort,
- (ii) Quick sort,
- (iii) Heap sort,
- (iv) Counting Sort.
- 1. Only i
- 2. Only ii
- 3. Both i and ii
- 4. Both iii and iv

Correct Choice : 1 From Lectuer # 15 71 - Mergesort is a stable algorithm but not an in-place algorithm. 1. TRUE 2. FALSE Correct Choice : 1 From Lectuer # 16 72 - Memorization is? 1. To store previous results for future use 2. To avoid this unnecessary repetitions by writing down the results of recursive 12 calls and looking them up again if we need them later 3. To make the process accurate 4. None of the above Correct Choice : 2 From Lectuer # 16 73 - Dynamic programming algorithms need to store the results of intermediate sub-problems. 1. TRUE 2. FALSE 4. Correct Choice : 1 From Lectuer # 17 74 - Dynamic programming uses a top-down approach. 1. TRUE **2. FALSE** 3. 4. Correct Choice : 2 From Lectuer # 17 75 - The edit distance between FOOD and MONEY is 1. At most four 2. At least four 3. Exact four 4. Wrong Correct Choice : 1 From Lectuer # 17 76 - The edit distance between FOOD and MONEY is 1. At most four 2. At least four 3. Exact four 4. Wrong Correct Choice : 1 From Lectuer # 17 77 - If there are O (n^2) entries in edit distance matrix then the total running time is O (1) O (n^2) O(n) $O(n \log n)$ Correct Choice : 2 From Lectuer # 18 13 79 - A p x q matrix A can be multiplied with a q x r matrix B. The result will be a p x r matrix

3. 4.

3.

C. There are (p. r) total entries in C and each takes to compute.
1. O (q)
2.0(1)
$3.0(n^2)$
4. U (II^3) Correct Choice : 1 From Lecturer # 10
Confect Choice . 1 Fiolin Lecture # 19
approach because,
1. We do not know the optimum k
2. We use divide and conquer for sorting only
3. We can easily perform it in linear time
4. Size of data is not given
Correct Choice : 1 From Lectuer # 19
82 - A p x q matrix A can be multiplied with a q x r matrix B. The result will be a p x
r matrix
C. There are (p . r) total entries in C and each takes to compute.
2.0(1)
$3.0(11^{2})$
4. U (II^3) Correct Choice : 1 From Lecturer # 10
22 The Vnenegal's problem belongs to the domain of problems
1 Ontimization
2 ND Complete
2. M Complete 3. Linear Solution
A Sorting
Correct Choice : 1 From Lecturer # 21
84 Suppose we have three items as shown in the following table, and suppose
the capacity of the knapsack is $50 \text{ i.e. } W = 50$. Item Value Weight 1.60.10.2.100
20.3 120.30 The optimal solution is to pick
1. Items 1 and 2
2. Items 1 and 3
3. Items 2 and 3
4. None of these
14
Correct Choice : 4 From Lectuer # 22
Correct Choice : 3 From Lectuer # 21
85 - Huffman algorithm uses a greedy approach to generate a postfix code T
that minimizes the expected length B (T) of the encoded string.
1. TRUE
2. FALSE
Correct Choice : 1 From Lectuer # 22
86 - The codeword assigned to characters by the Hullman algorithm have the property
that no codeword is the positix of any other.
Z. FALSE

3. 4.

4.

Correct Choice : 2 From Lectuer # 22

87 - The greedy part of the Huffman encoding algorithm is to first find two nodes with larger frequency.

1. TRUE

2. FALSE

3.

4.

Correct Choice : 2 From Lectuer # 22

88 - An optimization problem is one in which you want to find,

- 1. Not a solution
- 2. An algorithm
- 3. Good solution
- 4. The best solution

Correct Choice : 4 From Lectuer # 22

MCQz (Set-3)

Q What type of instructions Random access machine can execute?

Choose best answer.

Geometric and arithmetic

Algebraic and logic

Arithmetic and logic

Parallel and recursive

Q Due to left complete nature of binary tree, the heap can be stored in

• <u>Arrays</u>

- Structures
- Link Lis
- Stack

Q What type of instructions Random Access Machine (RAM) can execute? Choose best answer

Algebraic and logic Geometric and arithmetic **Arithmetic and logic** Parallel and recursive

Q For Chain Matrix Multiplication we can not use divide and conquer approach because,

We do not know the optimum k

We use divide and conquer for sorting only

We can easily perform it in linear time Size of data is not given

Q knapsack problem is called a "0-1" problem, because

\$

Fach item must be entirely accented or rejected			
22222222222222222222222			
22222222222222222222222			
O word Algorithm comes from the name of the muslim author Abu Ja'far			
Mohammad ibn Musa al-Khowarizmi.			
Q al-Khwarizmi's work was written in a book titled al Kitab al-mukhatasar fi hisab <u>al-</u>			
jabr wa'l-muqabalah			
O What is the total time to heapify?			
• O(log n)			
• $O(n \log n)$			
• $O(n2 \log n)$			
• O(log2n)			
>			
MCQz (Set-4)			
1. For the Sieve Technique we take time			
> T(nk) .			
>T(n /			
$3) > n^2$			
>n/3			
2. Sieve Technique applies to problems where we are interested in finding a single item from a larger set of			
Select correct option:			
>n items			
>phases			
>pointers			
>constant			
3 graphical representation of algorithm.			
> asymptotic			
>. flowchart			
4. who invented the quick sort			
5. Function is given like $4n^4 + 5n^3 + n$ what is the run time of this			
$\sim theata(n^4)$			
$\sim theata(11.5)$			
$>$ theata(4n^4+ 5n^3)			
6. main elements to a divide-and-conquer			
Divide>conquer>combine			
7. $T(n) = \{4 \text{ if } n=1, \text{ otherwise}\}$			
$T(n/5)+3n^2$ what is the answer if n=5			
answer is 79			
8. Mergesort is a stable algorithm but not an in-place algorithm.			
>True			
>Ialse 0 Counting port the numbers to be ported are in the range 1 to be where being are 11			
9. Counting solt the numbers to be solice are in the fange 1 to K where K is sillall.			

MCQz (Set-5)

Question # 1 of 10 (Start time: 06:18:58 PM) Total Marks: 1 We do sorting to, Select correct option:

keep elements in random positions keep the algorithm run in linear order keep the algorithm run in (log n) order **keep elements in increasing or decreasing order**

Question # 2 of 10 (Start time: 06:19:38 PM) Total Marks: 1 Heaps can be stored in arrays without using any pointers; this is due to the ______ nature of the binary tree,

Select correct option: left-complete right-

complete tree nodes tree leaves

Question # 3 of 10 (Start time: 06:20:18 PM) Total Marks: 1 Sieve Technique can be applied to selection problem? Select correct option:

True

False

Question # 4 of 10 (Start time: 06:21:10 PM) Total Marks: 1 A heap is a left-complete binary tree that conforms to the

Select correct option: increasing order only decreasing order only heap order

(log n) order

Question # 5 of 10 (Start time: 06:21:39 PM) Total Marks: 1 A (an) ______ is a left-complete binary tree that conforms to the heap order Select correct option: heap

binary tree binary search tree array

Question # 6 of 10 (Start time: 06:22:04 PM) Total Marks: 1 Divide-and-conquer as breaking the problem into a small number of Select correct option: pivot Sieve smaller sub problems

Selection

Question # 7 of 10 (Start time: 06:22:40 PM) Total Marks: 1 In Sieve Technique we do not know which item is of interest Select correct option:

True

False

Question # 8 of 10 (Start time: 06:23:26 PM) Total Marks: 1

The recurrence relation of Tower of Hanoi is given below $T(n)=\{1 \text{ if } n=1 \text{ and } 2T(n-1) \text{ if } n > 1 \text{ In order to move a tower of 5 rings from one peg to another, how many ring moves are required? Select correct$

option: 16

10

32

31

Question # 9 of 10 (Start time: 06:24:44 PM) Total Marks: 1 In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent

series in the

analysis, Select correct option:

linear

arithmetic

geometric

exponent

Question # 10 of 10 (Start time: 06:25:43 PM) Total Marks: 1

For the heap sort, access to nodes involves simple _ operations. Select correct option:

arithmetic

binary algebraic logarithmic

MCQz (Set-6)

1. For the sieve technique we solve the problem,		
recursively		
nathematically		
recisely		
ccurately		
2. We do sorting to,		
teep elements in random positions		
teep the algorithm run in linear order		
teep the algorithm run in (log n) order		
keep elements in increasing or decreasing order		

3. The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,

divide-and-conquer
ecrease and conquer
reedy nature
l-dimension Maxima
4. In Sieve Technique we do not know which item is of interest
True
`alse
5. In the analysis of Selection algorithm, we make a number of passes,
in fact it could be as many as,
(n)
(n / 2)
log n
n / 2 + n / 4
6. Divide-and-conquer as breaking the problem into a small number
f pivot
lieve
smaller sub problems
election
7. A heap is a left-complete binary tree that conforms to the
ncreasing order only
ecreasing order only
heap order
log n) order
8. Slow sorting algorithms run in,
<u>T(n^2)</u>
(n)
$(\log n)$
9. One of the clever aspects of heaps is that they can be stored in
arrays without using any
pointers
onstants
ariables
unctions
10. Sorting is one of the few problems where provable bonds exits on how fast
we can sort,
Ipper
lower
verage
bg n
nd

MCQz (Set-7)

11. For the sieve technique we solve the roblem, mathematically recisely

ccurately
recursively
12. Sieve Technique can be applied to selection problem?
true
alse
13. How much time merge sort takes for an array of numbers?
n^2)
(n)
14 For the Signa Technique we take time
T(nk)
$\frac{11}{2}$ $\frac{11}{2}$
/3
15. Heaps can be stored in arrays without using any pointers; this is due to the
nature of the binary
tree, left-complete
ight-complete
ree nodes
ree leaves
16. How many elements do we eliminate in each time for the Analysis of
Selection algorithm?
2 elements
(n / 2) + n elements
n elements
17. We do sorting to
teen elements in random positions
teep the algorithm run in linear order
teep the algorithm run in (log n) order
keep elements in increasing or decreasing order
<u>18.</u> In which order we can
ort? increasing order only
ecreasing order only
increasing order or decreasing
10 A been is a left complete binery tree that conforms to the
19. A neap is a left-complete binary tree that comornis to the
horeasing order only
hean order
og n) order
20. In the analysis of Selection algorithm, we make a number of passes.
in fact it could be as many as,
(n)
(n / 2)
log n
1 / 2 + n / 4
>

MCQz (Set-8)

21. A heap is a left-complete binary tree that conforms to the _____

ncreasing order only lecreasing order only

heap order

og n) order

 $\overline{22}$. How much time merge sort takes for an array of numbers?

`(n^2)

`(n)

T(log n)

`(n log n)

23. One of the clever aspects of heaps is that they can be stored in arrays without using any _____.

1	pointers
	onstants
	ariables
	unctions
24	n the analysis of Selection algorithm, we eliminate a constant fraction of

the array with each phase; we get the convergent _____

series in the

nalysis, linear

rithmetic

geometric

xponent

25. Sieve Technique applies to problems where we are interested in finding a single item from a larger set of ______

n item	S		
hases			
ointer	S		
onsta	nt		

26. A (an) _____ is a left-complete binary tree that conforms to the been order

the heap of def	
heap	
inary tree	
inary search	
ree array	
27. The sieve technique works in	as
follows phases	
umbers	
ntegers	
outines	
28. For the sieve technique we solve the	
problem, recursively	
nathematically	
recisely	
ccurately	
29. For the heap sort, access to nodes involves simple ____

operations.

arithmetic
inary
lgebraic
ogarithmic
30. The analysis of Selection algorithm shows the total running time is indeedin n, \langle
rithmetic
eometric
linear
rthogonal
=======================================
MCQz (Set-9)

Question # 1 of 10 (Start time: 07:39:23 AM) Total Marks: 1 For the sieve technique we solve the problem,

Select correct option: recursively hathematically recisely ccurately

Question # 2 of 10 (Start time: 07:40:32 AM) Total Marks: 1 For the heap sort, access to nodes involves simple ______ operations.

Select correct option:

arithmetic inary lgebraic ogarithmic

Question # 3 of 10 (Start time: 07:41:58 AM) Total Marks: 1 We do sorting to, Select correct option:

teep elements in random positions teep the algorithm run in linear order teep the algorithm run in (log n) order **keep elements in increasing or decreasing order**

Question # 4 of 10 (Start time: 07:42:18 AM) Total Marks: 1 One of the clever aspects of heaps is that they can be stored in arrays without using any

Select correct
option: pointers
onstants
ariables
anctions

	Pg No. 43
Question # 5 of 10 (Start time: 07:42:55 AM) Total Marks: 1 A (an) is a left-complete binary tree that conforms to the heap order Select correct option: heap	
earch tree array	
Question # 6 of 10 (Start time: 07:43:24 AM) Total Marks: 1 The analysis of Selection algorithm shows the total running time is indeed in n, Select correct ption: arithmetic	
linear rthogonal	
Question # 7 of 10 (Start time: 07:44:11 AM) Total Marks: 1 Sieve Technique applies to problems where we are interested in finding a single item from a larger set of Select correct	

option: n items
hases
ointers
onstant
Question # 8 of 10 (Start time: 07:45:06 AM) Total Marks: 1 Divide- and-conquer as breaking the problem into a small number of
<u>Sel</u> ect correct
ption: pivot
Sieve
smaller sub problems

Question # 9 of 10 (Start time: 07:45:36 AM) Total Marks: 1

In Sieve Technique we do not know which item is of interest Select correct option:

True			
alse			

Question # 10 of 10 (Start time: 07:46:17 AM) Total Marks: 1 How much time merge sort takes for an array of numbers? Select correct option:

`(n^2)
`(n)
`(log n)

Selection

T(n log n)

MCQz (Set-10)

Question # 1 of 10 (Start time: 07:48:31 AM) Total Marks: 1 For the heap sort we store the tree nodes in

Select correct option:

level-order traversal n-order traversal pre-order traversal

ost-order traversal

Question # 2 of 10 (Start time: 07:48:53 AM) Total Marks: 1 One of the clever aspects of heaps is that they can be stored in arrays without using any _____.

Select correct		
option: pointers		
onstants		
ariables		
unctions		

Question # 3 of 10 (Start time: 07:49:03 AM) Total Marks: 1

Sorting is one of the few problems where provable _____ bonds exits on how fast we can sort,

Select correct

phon. upper	
lower	
verage	
og n	
Question # 4 of	10 (Start time: 07:49:59 AM) Total Marks: 1
A (an)	is a left-complete binary tree that conforms to the

heap order

Select correct option: **heap**

inary tree binary earch tree array

Question # 5 of 10 (Start time: 07:50:09 AM) Total Marks: 1

Sieve Technique applies to problems where we are interested in finding a single item from a larger set of _____

Select correct

option: **n items**

hases ointers

onstant

Question # 6 of 10 (Start time: 07:50:20 AM) Total Marks: 1 How much time merge sort takes for an array of numbers? Select correct option:

Question # 7 of 10 (Start time: 07:50:36 AM) Total Marks: 1 A heap is a left-complete binary tree that conforms to the _____

Select correct option:		
ncreasing order only		
ecreasing order only		
heap order		
.og n) order		

Question # 8 of 10 (Start time: 07:51:04 AM) Total Marks: 1

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,

Select correct option:

Question # 9 of 10 (Start time: 07:51:41 AM) Total Marks: 1

The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,

Select correct option:

Question # 10 of 10 (Start time: 07:52:17 AM) Total Marks: 1 The analysis of Selection algorithm shows the total running time is indeed

MCQz (Set-11)

Question # 1 of 10 (Start time: 07:53:11 AM) Total Marks: 1 The sieve technique works in ______ as follows Select correct option: **phases** umbers ntegers outines Question # 2 of 10 (Start time: 07:53:53 AM) Total Marks: 1 Sorting is one of the few problems where provable _____ bonds exits on how fast we can sort,

Select correct

	ption: upper
]	lower
	verage
	og n

Question # 3 of 10 (Start time: 07:54:01 AM) Total Marks: 1

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,

Select correct option:

`(n) `(n / 2)

log n 1 / 2 + n / 4

Question # 4 of 10 (Start time: 07:54:16 AM) Total Marks: 1 For the Sieve Technique we take time Select correct option:

Question # 5 of 10 (Start time: 07:55:31 AM) Total Marks: 1

A (an) _____ is a left-complete binary tree that conforms to the heap order

Select correct option: **heap** inary tree binary earch tree

rray

Question # 6 of 10 (Start time: 07:55:40 AM) Total Marks: 1

For the heap sort we store the tree nodes in Select correct option:

level-order traversal
n-order traversal pre-
rder traversal post-
rder traversal
Question # 7 of 10 (Start time: 07:55:51 AM) Total Marks: 1
In the analysis of Selection algorithm, we eliminate a constant fraction of
the array with each phase; we get the convergent series in
the analysis,

Select correct ption: linear rithmetic geometric

xponent

Question # 8 of 10 (Start time: 07:56:30 AM) Total Marks: 1

One of the clever aspects of heaps is that they can be stored in arrays without using any _____.

Select correct

option: **pointers** onstants ariables unctions

Question # 9 of 10 (Start time: 07:56:41 AM) Total Marks: 1 Analysis of Selection algorithm ends up with, Select correct option:

T(n)
`(1 / 1 + n)
(n / 2)
((n / 2) + n)

Question # 10 of 10 (Start time: 07:58:12 AM) Total Marks: 1 The analysis of Selection algorithm shows the total running time is indeed in n

<u>Sel</u> ect correct	
ption: arithmetic	
eometric	
linear	
rthogonal	
=======================================	

MCQz (Set-12)

Question No: 1 (Marks: 1) - Please choose one

An optimization problem is one in which you want to find,

► Not a solution

- ► An algorithm
- ► Good solution
- The best solution

Below Highlighted is Not For Midterm

Question No: 2 (Marks: 1) - Please choose one

Although it requires more complicated data structures, Prim's algorithm for a minimum spanning tree is better than Kruskal's when the graph has a large number of vertices.

▶ True

False

Question No: 3 (Marks: 1) - Please choose one

If a problem is in NP, it must also be in P.

- ▶ True
- ▶ False
- unknown

Question No: 4 (Marks: 1) - Please choose one

What is generally true of Adjacency List and Adjacency Matrix representations of graphs?

Lists require less space than matrices but take longer to find the weight of an edge (v1,v2)

Lists require less space than matrices and they are faster to find the weight of an edge (v1,v2)

► *Lists* require more space than *matrices* and they take longer to find the weight of an edge (v1,v2)

Lists require more space than matrices but are faster to find the weight of an edge (v1,v2)

Question No: 5 (Marks: 1) - Please choose one

If a graph has v vertices and e edges then to obtain a spanning tree we have to delete

- ▶ v edges.
- ▶ v e + 5 edges
- ▶ v + e edges.
- None of these

Question No: 6 (Marks: 1) - Please choose one

Maximum number of vertices in a Directed Graph may be |V2|

- ► True
- ► False

Question No: 7 (Marks: 1) - Please choose one

The Huffman algorithm finds a (n) ______ solution.

- Optimal
- Non-optimal
- Exponential
- Polynomial
- Question No: 8 (Marks: 1) Please choose one

The Huffman algorithm finds an exponential solution
▶ True
► False
Question No: 9 (Marks: 1) - Please choose one
The Huffman algorithm finds a polynomial solution
► True
► False
Question No: 10 (Marks: 1) - Please choose one
The greedy part of the Huffman encoding algorithm is to first find two
nodes with larger frequency.
► True
► False
Question No: 11 (Marks: 1) - Please choose one
The codeword assigned to characters by the Huffman algorithm have
the property that no codeword is the postfix of any other.
► True
► False
Question No: 12 (Marks: 1) - Please choose one
Huffman algorithm uses a greedy approach to generate a postfix code T

Huffman algorithm uses a greedy approach to generate a postfix code T that minimizes the expected length B (T) of the encoded string.

- ▶ True
- ▶ False

Question No: 13 (Marks: 1) - Please choose one

Shortest path problems can be solved efficiently by modeling the road map as a graph.

- True
- False

Question No: 14 (Marks: 1) - Please

<mark>choose one</mark>

Dijkestra's single source shortest path algorithm works if all edges weights are non-negative and there are negative cost cycles.

- ▶ True
- ▶ False

Question No: 15 (Marks: 1) - Please choose one

Bellman-Ford allows negative weights edges and negative cost cycles.

- ▶ True
- False

Question No: 16 (Marks: 1) - Please choose one

The term "coloring" came form the original application which was in architectural design.

- ▶ True
- False

Question No: 17 (Marks: 1) - Please choose one

In the clique cover problem, for two vertices to be in the same group, they must be adjacent to each other.

- True
- False

Question No: 18 (Marks: 1) - Please choose one

Dijkstra's algorithm is operates by maintaining a subset of vertices

- ▶ True
- ► False

Question No: 19 (Marks: 1) - Please choose one

The difference between Prim's algorithm and Dijkstra's algorithm is that Dijkstra's algorithm uses a different key.

▶ True

False

Question No: 20 (Marks: 1) - Please choose one

Consider the following adjacency list:

Which of the following graph(s) describe(s) the above adjacency list?

►

►

Question No: 21 (Marks: 1) - Please choose one

We do sorting to,

- keep elements in random positions
- keep the algorithm run in linear order
- keep the algorithm run in (log n) order
- keep elements in increasing or decreasing order

Question No: 22 (Marks: 1) - Please choose one

After partitioning array in Quick sort, pivot is placed in a position such that

Values smaller than pivot are on left and larger than pivot are on

right____

Values larger than pivot are on left and smaller than pivot are on right

- Pivot is the first element of array
- Pivot is the last element of array

Question No: 23 (Marks: 1) - Please choose one

Merge sort is stable sort, but not an in-place algorithm

▶ True

▶ False

Question No: 24 (Marks: 1) - Please choose one

In counting sort, once we know the ranks, we simply ______ numbers to their final positions in an output array.

- ▶ Delete
- ► copy
- ▶ Mark
- ▶ arrange

Question No: 25 (Marks: 1) - Please choose one

Dynamic programming algorithms need to store the results of intermediate sub-problems.

► True

► False

Question No: 26 (Marks: 1) - Please choose one

A p × q matrix A can be multiplied with a q × r matrix B. The result will be a p × r matrix C. There are (p • r) total entries in C and each takes to compute.

▶ O (q)

- ► O (1)
- ► O (n2)
- \blacktriangleright O (n3)

MCQz (Set-13)

Question # 1 of 10 (Start time: 10:02:41 PM) Total Marks: 1 For the sieve technique we solve the problem,

Select correct option: **recursively** mathematically precisely accurately The sieve technique works in _____ as follows Select correct option: phases numbers integers routines Slow sorting algorithms run in, Select correct option: T(n^2) T(n) $T(\log n)$ A (an) ____ _____ is a left-complete binary tree that conforms to the heap order Select correct option: **heap** binary tree binary search tree array In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent ______ series in the analysis, Select correct option: linear arithmetic geometric exponent

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,

Select correct option: T(n)

T(n /

2) log n

n / 2 + n / 4

The sieve technique is a special case, where the number of sub problems is just

Select correct option: 5

many

1 few

In which order we can sort?

Select correct option: increasing order only decreasing order only

increasing order or decreasing

order both at the same time

The recurrence relation of Tower of Hanoi is given below $T(n)=\{1 if n \in \mathbb{N}\}$ n=1 and 2T(n-1) if n > 1 In order to move a tower of 5 rings from one peg to another, how many ring moves are required? Select correct option: 16 10 32 31 Analysis of Selection algorithm ends up with, Select correct option: T(n)T(1 / 1 +n) T(n / 2)T((n / 2) + n)Last message received on 10/13 at 12:43 AM Khanjee: We do sorting to, Select correct option: keep elements in random positions keep the algorithm run in linear order keep the algorithm run in (log n) order keep elements in increasing or decreasing order Khanjee: Divide-and-conquer as breaking the problem into a small number of Select correct option: pivot

Sieve

smaller sub problems

Selection

The analysis of Selection algorithm shows the total running time is indeed

____in n, Select correct

option: arithmetic

geometric

linear

orthogonal

How many elements do we eliminate in each time for the Analysis of Selection algorithm?

Select correct option:

n / 2 elements (n / 2) + n elements n / 4 elements 2 n elements

Sieve Technique can be applied to selection problem? Select correct option:

True

For the heap sort we store the tree nodes in

Select correct option: level-order traversal

in-order traversal preorder traversal postorder traversal

MCQz (Set-14)

Question # 1 of 10 (Start time: 10:49:41 PM) Total Marks: 1

Which is true statement in the

following. Select correct option:

Kruskal algorithm is multiple source technique for finding MST.

Kruskal's algorithm is used to find minimum spanning tree of a graph,

time complexity of this algorithm is O(EV)

Both of above

Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best Tree edge) when the graph has relatively few edges.

Question # 2 of 10 (Start time: 10:50:58 PM) Total Marks: 1

Which is true statement.

Select correct option:

Breadth first search is shortest path algorithm that works on un-weighted graphs

Depth first search is shortest path algorithm that works on un-weighted graphs. Both of above are true. None of above are true.

Question # 3 of 10 (Start time: 10:52:18 PM) Total Marks: 1

What is the time complexity to extract a vertex from the priority queue in Prim's algorithm?

Select correct
option: log (V) V.V E.E log (E)
Question # 4 of 10 (Start time: 10:53:03 PM) Total Marks: 1 The relationship between number of back edges and number of cycles in DFS is, Select correct option: Both are equal Back edges are half of cycles Back edges are one quarter of cycles There is no relationship between no. of edges and cycles
Question # 5 of 10 (Start time: 10:54:28 PM) Total Marks: 1 Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best tree edge) when the graph has relatively few edges. Select correct option: True False
Question # 6 of 10 (Start time: 10:55:28 PM) Total Marks: 1 In digraph G=(V,E) ;G has cycle if and only if Select correct option: The DFS forest has forward edge. The DFS forest has back edge The DFS forest has both back and forward edge BFS forest has forward edge
Question # 7 of 10 (Start time: 10:57:01 PM) Total Marks: 1 There is relationship between number of back edges and number of cycles in DFS Select correct option: Both are equal. Cycles are half of back edges. Cycles are one fourth of back edges. There is no relationship between back edges and number of cycles.
Question # 8 of 10 (Start time: 10:57:27 PM) Total Marks: 1 A digraph is strongly connected under what condition? Select correct option: A digraph is strongly connected if for every pair of vertices u, v e V, u can reach v . A digraph is strongly connected if for every pair of vertices u, v e V, u can reach v and vice versa. A digraph is strongly connected if for at least one pair of vertex u, v e V, u can reach v and vice versa.

A digraph is strongly connected if at least one third pair of vertices $u, v \in V, u$ can reach v and vice versa.

Question # 9 of 10 (Start time: 10:58:50 PM) Total Marks: 1 If you find yourself in maze the better traversel approach will be : Select correct option:

BFS
BFS and DFS both are valid
Level order
DFS
Question # 10 of 10 (Start time: 11:00:12 PM) Total Marks: 1
You have an adjacency list for G, what is the time complexity to compute Graph
transpose G^T ?
Select correct option:
(V+E)
V.E
V
E
>

MCQz (Set-15)

Question # 1 of 10 (Start time: 11:07:45 PM) Total Marks: 1

You have an adjacency list for G, what is the time complexity to compute Graph transpose G^T ?

Select correct option:

(V+E)			
V.E			
V			
E			

Question # 2 of 10 (Start time: 11:08:28 PM) Total Marks: 1

Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best tree edge) when the graph has relatively few edges.

Select correct option:

True	
False	

Question # 3 of 10 (Start time: 11:09:01 PM) Total Marks: 1

The relationship between number of back edges and number of cycles in DFS is, Select correct option:

Both are equal

Back edges are half of cycles

Back edges are one quarter of cycles

There is no relationship between no. of edges and cycles

Question # 4 of 10 (Start time: 11:09:41 PM) Total Marks: 1 What is the time complexity to extract a vertex from the priority queue in Prim's algorithm?

Select correct option:

log	(V)
V.V	
E.E	
log (E)

Question # 5 of 10 (Start time: 11:10:14 PM) Total Marks: 1 Which is true statement in the following.

Select correct option:

Kruskal algorithm is multiple source technique for finding MST.

Kruskal's algorithm is used to find minimum spanning tree of a graph,

time complexity of this algorithm is O(EV)

Both of above

Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best Tree edge) when the graph has relatively few edges.

----->

MCQz (Set-16)

Question # 1 of 10 (Start time: 06:18:58 PM) Total Marks: 1 We do sorting to, Select correct option:

keep elements in random positions

keep the algorithm run in linear order

keep the algorithm run in (log n) order

keep elements in increasing or decreasing order

Question # 2 of 10 (Start time: 06:19:38 PM) Total Marks: 1 Heaps can be stored in arrays without using any pointers; this is due to the

_____ nature of the binary

tree, Select correct option:

left-complete

right-complete tree nodes tree leaves Question # 3 of 10 (Start time: 06:20:18 PM) Total Marks: 1 Sieve Technique can be applied to selection problem? Select correct option:

True

False

Question # 4 of 10 (Start time: 06:21:10 PM) Total Marks: 1 A heap is a left-complete binary tree that conforms to the

Select correct option:

increasing order only

decreasing order only

heap order

(log n) order

Question # 5 of 10 (Start time: 06:21:39 PM) Total Marks: 1

A (an) ______ is a left-complete binary tree that conforms to the heap order Select correct option:

heap

binary tree binary search

tree array Question # 6 of 10 (Start time: 06:22:04 PM) Total Marks: 1

Divide-and-conquer as breaking the problem into a small number of

Select correct option: pivot Sieve

smaller sub problems

Selection

Question # 7 of 10 (Start time: 06:22:40 PM) Total Marks: 1

In Sieve Technique we do not know which item is of

interest Select correct option:

True

False

Question # 8 of 10 (Start time: 06:23:26 PM) Total Marks: 1

The recurrence relation of Tower of Hanoi is given below $T(n)=\{1 \text{ if } n=1 \text{ and } 2T(n-1) \text{ if } n > 1 \text{ In order to move a tower of 5 rings from one peg to another, how many ring moves are required?}$

Select correct

option: 16

10

32 31

Question # 9 of 10 (Start time: 06:24:44 PM) Total Marks: 1

In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent ______ series in the analysis,

Select correct

option: linear

arithmetic geometric

exponent

Question # 10 of 10 (Start time: 06:25:43 PM) Total Marks: 1

For the heap sort, access to nodes involves simple _____ operations.

Select correct

option: arithmetic

binary algebraic

logarithmic

----->

MCQz (Set-17)

For the sieve technique we solve the problem,

Select correct

option: **recursively**

mathematically precisely accurately The sieve technique works in _____ as follows Select correct option:

Phases

numbers integers routines Slow sorting algorithms run in, Select correct option:

T(n^2)

T(n)

T(log n)

A (an) ______ is a left-complete binary tree that conforms to the heap order

Select correct

option: heap

binary tree binary search tree array

In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent ______ series in the analysis,

Select correct option: linear

arithmetic geometric

exponent

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,

Select correct option:

T(n)

T(n /

2) log n

n/2+n/4

The sieve technique is a special case, where the number of sub problems is just Select correct option:

5

many

1 Few

In which order we can sort?

Select correct option: increasing order only decreasing order only

increasing order or decreasing

order both at the same time

The recurrence relation of Tower of Hanoi is given below $T(n)=\{1 \text{ if } n=1 \text{ and } 2T(n-1) \text{ if } n > 1 \text{ In order to move a tower of 5 rings from one peg to another, how many ring moves are required?}$

Select correct option: 16 10

Analysis of Selection algorithm ends up with,

32 31

Select correct option: T(n) T(1 / 1 + n)T(n / 2)We do sorting to, Select correct option: keep elements in random positions keep the algorithm run in linear order keep the algorithm run in (log n) order keep elements in increasing or decreasing order Divide-and-conquer as breaking the problem into a small number of Select correct option: pivot Sieve smaller sub problems Selection The analysis of Selection algorithm shows the total running time is indeed in n. Select correct option: arithmetic geometric linear orthogonal How many elements do we eliminate in each time for the Analysis of Selection algorithm? Select correct option: n / 2 elements (n / 2) + n elements n / 4 elements 2 n elements Sieve Technique can be applied to selection problem? Select correct option: True False For the heap sort we store the tree nodes in Select correct option: level-order traversal in-order traversal preorder traversal postorder traversal

MCQz (Set-18)

Question No: 1 (Marks: 1) - Please choose one

Random access machine or RAM is a/an

- ▶ Machine build by Al-Khwarizmi
- ► Mechanical machine
- ► Electronics machine
- Mathematical model

Question No: 2 (Marks: 1) - Please choose one

_ is a graphical representation of an algorithm

- ▶ ____otation
- ▶ lotation

Flowchart

► Asymptotic notation

Question No: 3 (Marks: 1) - Please choose one

A RAM is an idealized machine with ______ random-access memory.

- ▶ 256MB
- ► 512MB
- ▶ an infinitely large

▶ 100GB

Question No: 4 (Marks: 1) - Please choose one

What type of instructions Random Access Machine (RAM) can execute? Choose best answer

- ► Algebraic and logic
- ► Geometric and arithmetic
- Arithmetic and logic

Parallel and recursive

Question No: 5 (Marks: 1) - Please choose one

What will be the total number of max comparisons if we run brute-force maxima algorithm with n elements?

```
n<sup>2</sup>
2
n
n
n
ns
Question No: 6 (Marks: 1) - Please choose one
What is the solution to the recurrence T(n) = T(n/2)+n .
```

- $\blacktriangleright O(\log n)$
- ► O(n)
- $\blacktriangleright O(n \log n)$
- $\blacktriangleright O(n_2)$

Question No: 7 (Marks: 1) - Please choose one

```
Consider the following
code: For(j=1; j<n;j++)
For(k=1; k<15;k++)
For(l=5; l<n; l++)
{
Do_something_constant();
```

What is the order of execution for this code.
\triangleright O(n)
$\blacktriangleright O(n_3)$
\triangleright O(n ₂ log n)
$\blacktriangleright O(n_2)$
Consider the following Algorithm:
Factorial
(n) if $(n=1)$
return 1
return (n * Factorial(n-1))
{
Recurrence for the following algorithm is:
► $T(n) = T(n-1) + 1$
\blacktriangleright T(n) = nT(n-1) +1
\blacktriangleright T(n)= T(n-1) +n
► $T(n)=T(n(n-1)) + 1$
Question No: 9 (Marks: 1) - Please choose one
What is the total time to heapify?
► O(log n)
\triangleright O(n log n)
\triangleright O(n ₂ log n)
\triangleright O(log ₂ n)
Question No: 10 (Marks: 1) - Please choose one
When we call bearify then at each level the companian performed tales time
When we call heapify then at each level the comparison performed takes time
 When we call heapify then at each level the comparison performed takes time ▶ It will take Θ (1) Time will very according to the nature of input data
 When we call heapify then at each level the comparison performed takes time It will take O (1) Time will vary according to the nature of input data It can not be predicted
 When we call heapify then at each level the comparison performed takes time ► It will take ④ (1) ► Time will vary according to the nature of input data ► It can not be predicted ► It will take ⊕ (log p)
 When we call heapify then at each level the comparison performed takes time It will take Θ (1) Time will vary according to the nature of input data It can not be predicted It will take Θ (log n) Question No: 11 (Marks: 1) - Please choose one
 When we call heapify then at each level the comparison performed takes time It will take Θ (1) Time will vary according to the nature of input data It can not be predicted It will take Θ (log n) Question No: 11 (Marks: 1) - Please choose one In Quick sort, we don't have the control over the sizes of recursive calls
 When we call heapify then at each level the comparison performed takes time It will take ⊖ (1) Time will vary according to the nature of input data It can not be predicted It will take ⊕ (log n) Question No: 11 (Marks: 1) - Please choose one In Quick sort, we don't have the control over the sizes of recursive calls True
 When we call heapify then at each level the comparison performed takes time It will take ⊖ (1) Time will vary according to the nature of input data It can not be predicted It will take ⊖ (log n) Question No: 11 (Marks: 1) - Please choose one In Quick sort, we don't have the control over the sizes of recursive calls True False
 When we call heapify then at each level the comparison performed takes time It will take ⊙ (1) Time will vary according to the nature of input data It can not be predicted It will take ⊙ (log n) Question No: 11 (Marks: 1) - Please choose one In Quick sort, we don't have the control over the sizes of recursive calls True False Less information to decide
 When we call heapify then at each level the comparison performed takes time It will take Θ (1) Time will vary according to the nature of input data It can not be predicted It will take Θ (log n) Question No: 11 (Marks: 1) - Please choose one In Quick sort, we don't have the control over the sizes of recursive calls True False Less information to decide Either true or false
 When we call heapify then at each level the comparison performed takes time It will take Θ (1) Time will vary according to the nature of input data It can not be predicted It will take Θ (log n) Question No: 11 (Marks: 1) - Please choose one In Quick sort, we don't have the control over the sizes of recursive calls True False Less information to decide Either true or false Question No: 12 (Marks: 1) - Please choose one
 When we call heapify then at each level the comparison performed takes time It will take Θ (1) Time will vary according to the nature of input data It can not be predicted It will take Θ (log n) Question No: 11 (Marks: 1) - Please choose one In Quick sort, we don't have the control over the sizes of recursive calls True False Less information to decide Either true or false Question No: 12 (Marks: 1) - Please choose one Is it possible to sort without making comparisons?
 When we call heapify then at each level the comparison performed takes time It will take O (1) Time will vary according to the nature of input data It can not be predicted It will take O (log n) Question No: 11 (Marks: 1) - Please choose one In Quick sort, we don't have the control over the sizes of recursive calls True False Less information to decide Either true or false Question No: 12 (Marks: 1) - Please choose one Is it possible to sort without making comparisons? Yes
 When we call heapify then at each level the comparison performed takes time It will take Θ (1) Time will vary according to the nature of input data It can not be predicted It will take Θ (log n) Question No: 11 (Marks: 1) - Please choose one In Quick sort, we don't have the control over the sizes of recursive calls True False Less information to decide Either true or false Question No: 12 (Marks: 1) - Please choose one Is it possible to sort without making comparisons? Yes No
 When we call heapify then at each level the comparison performed takes time It will take Θ (1) Time will vary according to the nature of input data It can not be predicted It will take Θ (log n) Question No: 11 (Marks: 1) - Please choose one In Quick sort, we don't have the control over the sizes of recursive calls True False Less information to decide Either true or false Question No: 12 (Marks: 1) - Please choose one Is it possible to sort without making comparisons? Yes No Question No: 13 (Marks: 1) - Please choose one
 When we call heapify then at each level the comparison performed takes time It will take Θ (1) Time will vary according to the nature of input data It can not be predicted It will take Θ (log n) Question No: 11 (Marks: 1) - Please choose one In Quick sort, we don't have the control over the sizes of recursive calls True False Less information to decide Either true or false Question No: 12 (Marks: 1) - Please choose one Is it possible to sort without making comparisons? Yes No Question No: 13 (Marks: 1) - Please choose one If there are Θ (n2) entries in edit distance matrix then the total running time is
 When we call heapify then at each level the comparison performed takes time It will take Θ (1) Time will vary according to the nature of input data It can not be predicted It will take Θ (log n) Question No: 11 (Marks: 1) - Please choose one In Quick sort, we don't have the control over the sizes of recursive calls True False Less information to decide Either true or false Question No: 12 (Marks: 1) - Please choose one Is it possible to sort without making comparisons? Yes No Question No: 13 (Marks: 1) - Please choose one If there are Θ (n₂) entries in edit distance matrix then the total running time is Θ (1)
 When we call heapify then at each level the comparison performed takes time It will take Θ (1) Time will vary according to the nature of input data It can not be predicted It will take Θ (log n) Question No: 11 (Marks: 1) - Please choose one In Quick sort, we don't have the control over the sizes of recursive calls True False Less information to decide Either true or false Question No: 12 (Marks: 1) - Please choose one Is it possible to sort without making comparisons? Yes No Question No: 13 (Marks: 1) - Please choose one If there are Θ (n₂) entries in edit distance matrix then the total running time is Θ (1)
 When we call heapify then at each level the comparison performed takes time It will take Θ (1) Time will vary according to the nature of input data It can not be predicted It will take Θ (log n) Question No: 11 (Marks: 1) - Please choose one In Quick sort, we don't have the control over the sizes of recursive calls True False Less information to decide Either true or false Question No: 12 (Marks: 1) - Please choose one Is it possible to sort without making comparisons? Yes No Question No: 13 (Marks: 1) - Please choose one If there are Θ (n₂) entries in edit distance matrix then the total running time is Θ (n)
 When we call heapify then at each level the comparison performed takes time It will take Θ (1) Time will vary according to the nature of input data It can not be predicted It will take Θ (log n) Question No: 11 (Marks: 1) - Please choose one In Quick sort, we don't have the control over the sizes of recursive calls True False Less information to decide Either true or false Question No: 12 (Marks: 1) - Please choose one Is it possible to sort without making comparisons? Yes No Question No: 13 (Marks: 1) - Please choose one If there are Θ (n₂) entries in edit distance matrix then the total running time is Θ (n) Θ (n) Θ (n log n)
 When we call heapify then at each level the comparison performed takes time It will take Ø (1) Time will vary according to the nature of input data It can not be predicted It will take Ø (log n) Question No: 11 (Marks: 1) - Please choose one In Quick sort, we don't have the control over the sizes of recursive calls True False Less information to decide Either true or false Question No: 12 (Marks: 1) - Please choose one Is it possible to sort without making comparisons? Yes No Question No: 13 (Marks: 1) - Please choose one If there are Ø (n2) entries in edit distance matrix then the total running time is Ø (1) Ø (n) Ø (n log n) Question No: 14 (Marks: 1) - Please choose one Is on place the total running time is Ø (n) Ø (n log n) Question No: 14 (Marks: 1) - Please choose one Is on place the total running time is Ø (n) Ø (n log n) Question No: 14 (Marks: 1) - Please choose one Is on place the total running time in th

problems.

because,

► We do not know the optimum k

▶ We use divide and conquer for sorting only

- ▶ We can easily perform it in linear time
- Size of data is not given

Question No: 15 (Marks: 1) - Please choose one

The Knapsack problem belongs to the domain of _

- Optimization
- ► NP Complete
- ► Linear Solution
- ► Sorting

Question No: 16 (Marks: 1) - Please choose one

Suppose we have three items as shown in the following table, and suppose the capacity of the knapsack is 50 i.e. W = 50.

Item Value Weight

- 1 60 10
- 2 100 20
- 3 120 30

The optimal solution is to pick

- ▶ Items 1 and 2
- ► Items 1 and 3
- Items 2 and 3
- ► None of these

MCQz (Set-19)
Question # 1 of 10 Total Marks: 1
Divide-and-Conquer is as breaking the problem into a small number of
· Smaller Sub Problems
· Pivot
· Sieve
· Solutions
Question # 2 of 10 Total Marks: 1
Analysis of Selection Sort ends up with
· T(n)
T(1/1+n)
T(n/2)
T((n/2) + n)
Question # 3 of 10 Total Marks: 1
How many elements do we eliminate each time for the Analysis of Selection Algorithm?
· (n / 2)+n Elements
· n / 2 Elements
· n / 4 Elements

 \cdot 2 n Elements

Question # 4 of 10 Total Marks: 1

A *heap* is a left-complete binary tree that conforms to the ?

· Increasing Order

· Decreasing order

· Heap Order

· (nlog n) order

Question # 5 of 10 Total Marks: 1

The Sieve Sequence is a special case where the number of smaller sub problems is just_ .

· 4

 \cdot Many

· 1

· Few

Question # 6 of 10 Total Marks: 1

Heaps can be stored in arrays without using any pointers this is due to the of the binary tree?

· Tree Nodes

· Right-Complete Nature

Left-Complete Nature

· Tree Leaves

Question # 7 of 10 Total Marks: 1

For the Heap Sort access to nodes involves simple _ operations:

- \cdot Geometric
- \cdot Linear

· Arithmetic

· Algebraic

Question # 8 of 10 Total Marks: 1

The Analysis of Selection Sort shows that the total running time is indeed in n?

· Geometric

· Linear

- · Arithmetic
- · Algebraic

Question # 9 of 10 Total Marks: 1

For the sieve technique we solve the problem

· Recursively

- · Randomly
- \cdot Mathematically
- · Precisely

Question # 10 of 10 Total Marks: 1

How much time merger sort takes for an array of numbers?

- T(n^2)
- T(n)
- \cdot T(log n)
- T(n log n)

MCQz (Set-20)

Question # 1 of 10 (Start time: 06:18:58 PM) Total Marks: 1 We do sorting to, Select correct option:

keep elements in random positions keep the algorithm run in linear order keep the algorithm run in (log n) order

keep elements in increasing or decreasing order

Question # 2 of 10 (Start time: 06:19:38 PM) Total Marks: 1 Heaps can be stored in arrays without using any pointers; this is due to the ______ nature of the binary tree,

Select correct option:

left-complete right-

complete

tree nodes

tree leaves

Question # 3 of 10 (Start time: 06:20:18 PM) Total Marks: 1

Sieve Technique can be applied to selection

problem? Select correct option:

True

False

Question # 4 of 10 (Start time: 06:21:10 PM) Total Marks: 1 A heap is a left-complete binary tree that conforms to the

Select correct option: increasing order only decreasing order only

heap order

(log n) order Question # 5 of 10 (Start time: 06:21:39 PM) Total Marks: 1 A (an) ______ is a left-complete binary tree that conforms to the heap order Select correct option: heap

binary tree binary search tree array

Question # 6 of 10 (Start time: 06:22:04 PM) Total Marks: 1 Divide-and-conquer as breaking the problem into a small number of

Select correct option: pivot Sieve

smaller sub problems

Selection Question # 7 of 10 (Start time: 06:22:40 PM) Total Marks: 1 In Sieve Technique we do not know which item is of interest Select correct option: **True**

False

Question # 8 of 10 (Start time: 06:23:26 PM) Total Marks: 1 The recurrence relation of Tower of Hanoi is given below T(n)={1 if n=1 and 2T(n-1) if n >1 In order to move a tower of 5 rings from one peg to another, how many ring moves are required? Select correct option: 16 10 **32** 31

Select correct option: linear

arithmetic

geometric

exponent

Question # 10 of 10 (Start time: 06:25:43 PM) Total Marks: 1 For the heap sort, access to nodes involves simple _____ operations.

Select correct

option: arithmetic

binary algebraic

logarithmic

Question # 1 of 10 (Start time: 10:02:41 PM) Total Marks: 1 For the sieve technique we solve the problem,

Select correct

option: **recursively**

mathematically precisely accurately The sieve technique works in _____ as follows

Select correct

option: **phases**

numbers integers routines Slow sorting algorithms run in, Select correct option:

T(n^2)

T(n) T(log n)

A (an) ______ is a left-complete binary tree that conforms to the heap order Select correct option:

heap

binary tree

binary search

tree array

In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent ______ series in the analysis, Select correct

option: linear

arithmetic

geometric

exponent

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,

Select correct option:

T(n)

T(n / 2) log n

n/2 + n/4

The sieve technique is a special case, where the number of sub problems is just

Select correct

option: 5

many

1

few In which order we can sort?

Select correct option: increasing order only

decreasing order only

increasing order or decreasing

order both at the same time

The recurrence relation of Tower of Hanoi is given below $T(n)=\{1 \text{ if } n=1 \text{ and } 2T(n-1) \text{ if } n > 1 \text{ In} \}$

order to move a tower of 5 rings from one peg to another, how many ring moves are required?

Select correct option:

16

10

32

31

Analysis of Selection algorithm ends up with,

Select correct option: T(n) T(1 / 1 + n) T(n / 2)

T((n / 2) + n)

Last message received on 10/13 at 12:43 AM Khanjee: We do sorting to, Select correct option:

keep elements in random positions keep the algorithm run in linear order keep the algorithm run in (log n) order

keep elements in increasing or decreasing order

Khanjee: Divide-and-conquer as breaking the problem into a small number of Select correct option:

pivot

Sieve

smaller sub problems

Selection

The analysis of Selection algorithm shows the total running time is indeed ______in n, Select correct

option: arithmetic

geometric

linear

orthogonal

How many elements do we eliminate in each time for the Analysis of Selection algorithm? Select correct option:

n / 2 elements

(n / 2) + n elements n / 4 elements

2 n elements

Sieve Technique can be applied to selection problem? Select correct option:

True

For the heap sort we store the tree nodes in

Select correct option:

level-order traversal in-order traversal preorder traversal post-

order traversal

MCQz (Set-21)

1-One of the clever aspects of heaps is that they can be stored in arrays without using any _____.

pointers **

constants variables functions

2- For the heap sort we store the tree nodes in level-order traversal**

in-order traversal pre-order traversal post-order traversal

3- The sieve technique works in ______ follows phases

as

numbers integers routines

4- In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent ______ series in the analysis,

linear

arithmetic

geometric

** exponent

5- We do sorting to,

keep elements in random positions keep the algorithm run in linear order keep the algorithm run in (log n) order

keep elements in increasing or decreasing order ***

6- In the analysis of Selection algorithm, we make a number of passes, in fact it could be as

many as,

T(n)

T(n / 2)***

log n

n / 2 + n / 4

7- In which order we can

sort? increasing order only

decreasing order only

increasing order or decreasing order ***

both at the same time

8- In Sieve Technique we do not know which item is of

interest True**

False

9- For the sieve technique we solve the problem,

recursively**

mathematically

precisely

10- Divide-and-conquer as breaking the problem into a small number of

pivot

Sieve

smaller sub problems **

Selection

----->

MCQz (Set-22)

Question # 1 of 10 Total Marks: 1 Divide-and-Conquer is as breaking the problem into a small number of Smaller Sub Problems

- Smaller Sub Pro

• Pivot

 \cdot Sieve

· Solutions

Question # 2 of 10 Total Marks: 1

Analysis of Selection Sort ends up with

• T(n)

T(1/1+n) T(n/2)T((n/2) +n)

Question # 3 of 10 Total Marks: 1

How many elements do we eliminate each time for the Analysis of Selection Algorithm?

 \cdot (n / 2)+n Elements · n / 2 Elements \cdot n / 4 Elements $\cdot 2$ n Elements Ouestion # 4 of 10 Total Marks: 1 A *heap* is a left-complete binary tree that conforms to the ? · Increasing Order · Decreasing order · Heap Order \cdot (nlog n) order Question # 5 of 10 Total Marks: 1 The Sieve Sequence is a special case where the number of smaller sub problems is just_. • 4 · Many · 1 · Few Question # 6 of 10 Total Marks: 1

Heaps can be stored in arrays without using any pointers this is due to the of the binary tree?

· Tree Nodes

· Right-Complete Nature

· Left-Complete Nature

· Tree Leaves

Question # 7 of 10 Total Marks: 1

For the Heap Sort access to nodes involves simple _ operations:

· Geometric

 \cdot Linear

· Arithmetic

· Algebraic

Question # 8 of 10 Total Marks: 1

The Analysis of Selection Sort shows that the total running time is indeed in n?

· Geometric

· Linear

- · Arithmetic
- · Algebraic

Question # 9 of 10 Total Marks: 1

For the sieve technique we solve the problem

· Recursively

- Randomly
- \cdot Mathematically
- · Precisely

Question # 10 of 10 Total Marks: 1

How much time merger sort takes for an array of numbers? \cdot T(n^2)

· T(n)

 \cdot T(log n)

· T(n log n)

MCQz (Set-23)

Question # 2 of 10 (Start time: 09:23:34 PM) Total Marks: 1

The analysis of Selection algorithm shows the total running time is indeed in n.

Select correct option:

arithmetic geometric linear orthogonal

Question # 3 of 10 (Start time: 09:24:49 PM) Total Marks: 1

In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent ______ series in the analysis, Select correct option:

linear arithmetic **geometric** exponent

Question # 4 of 10 (Start time: 09:25:08 PM) Total Marks: 1 Slow sorting algorithms run in, Select correct option:

page 39

Select correct option:

T(n^2)

T(n) T(log n) T(n log n)

Question # 5 of 10 (Start time: 09:26:31 PM) Total Marks: 1

Heaps can be stored in arrays without using any pointers; this is due to the ______ nature of the binary tree,

Select correct option:

left-complete right-complete tree nodes tree leaves

Question # 6 of 10 (Start time: 09:27:11 PM) Total Marks: 1

A heap is a left-complete binary tree that conforms to the _

Select correct option:

increasing order only decreasing order only **heap order**

(log n) order

Question # 7 of 10 (Start time: 09:27:25 PM) Total Marks: 1 **Divide-and-conquer as breaking the problem into a small number of** Select correct option:

pivot Sieve **smaller sub problems** Selection

Question # 8 of 10 (Start time: 09:27:45 PM) Total Marks: 1 **The number of nodes in a complete binary tree of height h is** Select correct option:

2^(h+1) – 1 2 * (h+1) – 1 2 * (h+1) ((h+1) ^ 2) – 1

Question # 9 of 10 (Start time: 09:28:01 PM) Total Marks: 1 The sieve technique works in _____ as follows Select correct option:

phases numbers integers routines

Question # 10 of 10 (Start time: 09:28:24 PM) Total Marks: 1 **The running time of quick sort depends heavily on the selection of** Select correct option:

No of inputs Arrangement of elements in array Size o elements **Pivot element**

Question # 1 of 10 (Start time: 09:22:00 PM) Total Marks: 1 In Quick sort algorithm, constants hidden in T(n lg n) are Select correct option:

Large Medium

Not known (not confirmed) small

MCQz (Set-24)

Question # 1

Sorting is one of the few problems where provable _____ bonds exits on how fast we can sort,

Select correct option: upper lower page 39

average log n

Question # 2 For the heap sort we store the tree nodes in Select correct option:

level-order traversal

in-order traversal preorder traversal postorder traversal

Question # 3

Quick sort is based on divide and conquer paradigm; we divide the problem on base of pivot element and:

Select correct option:

There is explicit combine process as well to conquer the solutin.

No work is needed to combine the sub-arrays, the array is already sorted Merging the subarrays None of above.

Question # 4 In Sieve Technique we do not know which item is of interest Select correct option: True False

Question # 5 One of the clever aspects of heaps is that they can be stored in arrays without using any _____. Select correct option:

pointers constants variables

functions

Question # 6 **The sieve technique is a special case, where the number of sub problems is just** Select correct option:

5 many <mark>1</mark>

few

Question # 7 **The number of nodes in a complete binary tree of height h is** Select correct option:

<mark>2^(h+1) – 1</mark> 2 * (h+1) – 1

2 * (h+1) ((h+1) ^ 2) - 1

Question # 8 A heap is a left-complete binary tree that conforms to the _____

Select correct option: increasing order only decreasing order only

<mark>heap order</mark>

(log n) order

Question # 9 In which order we can sort?

Select correct option: increasing order only decreasing order only

increasing order or decreasing

order both at the same time

Question # 10

The sieve technique works in _____ as follows Select correct option:

phases

numbers integers routines

MCQz (Set-26) From 2004 Paper

Q#1Total time for heapify is:

O $(\log^2 n)$ O $(n \log n)$ O $(n^2 \log n)$

O (log n)

Q#2

Solve the recurrence using iteration method and also find time complexity (Θ notation) T (n) = C + O (1) + T (n-1) T (1) =1 and C is a constant.

Q#3

Suggest the criteria for measuring algorithms. Also discuss the issues need to be discussed in the algorithm design.

Q#4

If an algorithm has a complexity of $\log_2 n + n\log_2 n + n$. we could say that it has

complexity

O(n)

O(n log2 n)

O(3)

```
O(\log_2 (\log_2 n))
```

O (log₂ n)

Q#5

Let the set $P = \{(1, 13), (2, 9), (3, 15), (4, 12), (5, 14), (6, 6), (7, 3), (8, 10), (9, 2), (10, 8), (11, 9), (13, 6), (15, 3), (18, 5)\}$. You are required to give the final state of stack after the execution of sweep line algorithm for 2d-maxima. No intermediate steps or graphics to be shown.

Q#6

Suppose we have hardware capable of executing 10⁶ instructions per second. How long

would it take to execute an algorithm whose complexity function is T (n) = $2n^2$ on an

input of size $n = 10^8$?

Q#7

In RAM model instructions are executed One after another Parallel

Concurrent

Random

Q#8

In selection algorithm, because we eliminate a constant fraction of the array with each phase, we get the

Convergent geometric series

Divergent geometric series None of these

Q#9

Due to left-complete nature of binary tree, heaps can be stored in

Link list

Structure

Array

None of above

MCQz (Set-27) From 2004 Paper

Consider the following pairs of functions I. $f(x) = x_2 + 3x + 7 g(x) = x_2 + 10$ II $f(x) = x_2 \log(x) g(x) = x_3$ III $f(x) = x_4 + \log(3x_8 + 7) g(x) = (x_2 + 17x + 3)_2$ Which of the pairs of functions f and g are asymptotic? Only I Only II Both I and III None of the above **Question No. 3 Marks : 1** Execution of the following code fragment int Idx; for (Idx = 0; Idx < N; Idx++)ł cout << A[Idx] << endl; } is best described as being O(N) O(N₂) O(log N) O(N log N) Question No. 4 Marks : 1 If algorithm A has running time $7n_2 + 2n + 3$ and algorithm B has running time $2n_2$, then Both have same asymptotic time complexity A is asymptotically greater B is asymptotically greater None of others Question No. 5 Marks : 1 Which of the following sorting algorithms is stable? (i) Merge sort, (ii) Quick sort, (iii) Heap sort, (iv) Counting Sort. Only i Only ii Both i and ii Both iii and iv Question No. 6 Marks : 5 Determine the complexity of an algorithm that measures the number of print statements in an algorithm that takes a positive integer n and prints 1 one time, 2 two times, 3 three times , ... , n n times. That is 1 22333

.....

n n n nn (n times)

MCQz (Set-28) From 2007 Paper

Q#1Total time for heapify is: O (log2 n) O (n log n) O (n2 log n) O (log n)

Q#2

Solve the recurrence using iteration method and also find time complexity (Θ notation) T (n) = C + O (1) + T (n-1)

T (1) =1 and C is a constant.

Q#3

Suggest the criteria for measuring algorithms. Also discuss the issues need to be discussed in the algorithm design.

Q#4

If an algorithm has a complexity of $\log 2 n + n\log 2 n + n$. we could say that it has complexity

O(n) O(n log2 n) O(3) O(log2 (log2 n)) O (log2 n)

Q#5

Let the set $P = \{(1, 13), (2, 9), (3, 15), (4, 12), (5, 14), (6, 6), (7, 3), (8, 10), (9, 2), (10, 8), (11, 9), (13, 6), (15, 3), (18, 5)\}$. You are required to give the final state of stack after the execution of sweep line algorithm for 2d-maxima. No intermediate steps or graphics to be shown.

Q#6

Suppose we have hardware capable of executing 106 instructions per second. How long would it take to execute an algorithm whose complexity function is T (n) = 2n2 on an input of size n = 108?

Q#7

In RAM model instructions are executed One after another Parallel Concurrent Random

Q#8

In selection algorithm, because we eliminate a constant fraction of the array with each phase, we get the Convergent geometric series Divergent geometric series None of these **Q#9**

Due to left-complete nature of binary tree, heaps can be stored in Link list Structure Array None of above
