## MIDTERM EXAMINATION

Fall 2011
CS502- Fundamentals of Algorithms

Question No: 1 ( Marks: 1 ) - Please choose one
Due to left complete nature of binary tree, the heap can be stored in

1. Arrays (Page 40)
2. Structures
3. Link Lis

Stack
Question No: 1 (Marks: 1 ) - Please choose one
What type of instructions Random Access Machine (RAM) can execute?

```
    Algebraic and logic
- Geometric and arithmetic
- Arithmetic and logic (Page 10)
- Parallel and recursive
```


## Question No: 1 ( Marks: 1 ) - Please choose one

For Chain Matrix Multiplication we can not use divide and conquer approach because,

- We do not know the optimum $k$ (Page 86)
- We use divide and conquer for sorting only - We can easily perform it in linear time Size of data is not given


## Question No: 1 (Marks: 1 ) - Please choose one

What is the total time to heapify?

1. $O(\log n)($ Page 43)
2. $O(n \log n)$
3. $O\left(n^{2} \log _{2} n\right)$
4. $O\left(\log ^{2} n\right)$

Question No: 1 (Marks: 1 ) - Please choose one
word Algorithm comes from the name of the muslim author $\qquad$
Abu Ja'far Mohammad ibn Musa al-Khowarizmi.
Question No: 1 ( Marks: 1 ) - Please choose one al-Khwarizmi's work was written in a book titled $\qquad$
al Kitab al-mukhatasar fi hisab al-jabr wa'l-muqabalah

## MIIDTERM EXAMINATION <br> Spring 2010

CS502- Fundamentals of Algorithms
Question No: 1 (Marks: 1 ) - Please choose one
Random access machine or RAM is a/an

1. Machine build by Al-Khwarizmi
2. Mechanical machine
3. Electronics machine
4. Mathematical model (Page 10)

Question No: 2 (Marks: 1 ) - Please choose one
___ is a graphical representation of an algorithm

1. $\sum_{\Theta}$ notation
2. notation
3. Flowchart Click here for detail
4. Asymptotic notation

Question No: 3 (Marks: 1 ) - Please choose one A RAM is an idealized machine with $\qquad$ random-access memory.

1. 256 MB
2. 512 MB
3. an infinitely large (Page 10)
4. 100 GB

Question No: 4 (Marks: 1 ) - Please choose one
What type of instructions Random Access Machine (RAM) can execute? Choose best answer

1. Algebraic and logic
2. Geometric and arithmetic
3. Arithmetic and logic (Rep)
4. Parallel and recursive

Question No: 5 (Marks: 1 ) - Please choose one
What will be the total number of max comparisons if we run brute-force maxima algorithm with n elements?
$\rightarrow n^{2}$

1. $n_{n}^{-2}$
2. (Page 14)
3. $n^{8}$

Question No: 6 (Marks: 1 ) - Please choose one
What is the solution to the recurrence $T(n)=T(n / 2)+n$.

1. $O(\log n)$
2. $O(n)$ (Page 37)
3. $O(n \log n)$
4. $O\left(n^{2}\right)$

## Question No: 7 ( Marks: 1 ) - Please choose one

Consider the following code:

```
\(\operatorname{For}(\mathrm{j}=1 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++)\)
For(k=1; k<15;k++)
    For(l=5; 1<n; l++)
    \{
    Do_something_constant();
    \}
```

What is the order of execution for this code.
2. $\mathrm{O}\left(n_{3}\right)$
3. $\mathrm{O}\left(n_{2}^{3}\right)$
4. $\mathrm{O}\left(n^{2} \log n\right)$
5. $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Question No: 8 ( Marks: 1 ) - Please choose one What is the total time to heapify?
$\mathrm{O}(\log n)$ rep
2. $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
3. $O\left(n^{2} \log n\right)$
4. $\mathrm{O}\left(\log ^{2} \mathrm{n}\right)$

Question No: 9 (Marks: 1 ) - Please choose one
Consider the following Algorithm:
Factorial (n)\{
if ( $\mathrm{n}=1$ )
return 1
else
return (n * Factorial(n-1))
Recurrence for the following algorithm is:
3. $T(n)=T(n-1)+1$
4. $T(n)=n T(n-1)+1$
5. $T(n)=T(n-1)+n$
6. $T(n)=T(n(n-1))+1$

Question No: 10 (Marks: 1 ) - Please choose one
When we call heapify then at each level the comparison performed takes time
It will take $\Theta$ (1) (Page 43)

1. Time will vary according to the nature of input data
2. It can not be predicted
3. It will take $\Theta(\log n)$

Question No: 11 (Marks: 1 ) - Please choose one
In Quick sort, we don't have the control over the sizes of recursive calls
2. True (Page 40)
3. False
4. Less information to decide
5. Either true or false

Question No: 12 (Marks: 1 ) - Please choose one
Is it possible to sort without making comparisons?
3. Yes (Page 57)
4. No

Question No: 13 (Marks: 1 ) - Please choose one
If there are $\Theta\left(\mathrm{n}^{2}\right)$ entries in edit distance matrix then the total running time is

- $\Theta(1)_{2}$
$-\Theta\left(\mathrm{n}^{2}\right)$ Click here for detail

1. $\Theta$ (n)
2. $\Theta(n \log n)$

Question No: 14 (Marks: 1 ) - Please choose one
For Chain Matrix Multiplication we can not use divide and conquer approach because,
We do not know the optimum $k$ (Page 86)
2. We use divide and conquer for sorting only
3. We can easily perform it in linear time
4. Size of data is not given

Question No: 15 (Marks: 1 ) - Please choose one
The Knapsack problem belongs to the domain of $\qquad$ problems.

- Optimization (Page 91)

1. NP Complete
2. Linear Solution
3. Sorting

## Question No: 16 (Marks: 1 ) - Please choose one

Suppose we have three items as shown in the following table, and suppose the capacity of the knapsack is 50 i.e. $W=50$.

| Item | Value | Weight |
| ---: | ---: | ---: |
| 1 | 60 | 10 |
| 2 | 100 | 20 |
| 3 | 120 | 30 |

The optimal solution is to pick

1. Items 1 and 2
2. Items 1 and 3
3. Items 2 and 3 (correct)
4. None of these

## MIDTERM EXAMINATION

Spring 2010
CS502- Fundamentals of Algorithms
Question No: 1 (Marks: 1 ) - Please choose one
For the Sieve Technique we take time

- T(nk) (Page 34)
-T(n/3)
$\rightarrow \mathrm{n}^{\wedge}$ 2
-n/3
Question No: 1 (Marks: 1 ) - Please choose one
Sieve Technique applies to problems where we are interested in finding a single item
from a larger set of $\qquad$
Select correct option:
-n items (Page 34)
phases
pointers
- constant

Question No: 1 (Marks: 1 ) - Please choose one
$\ldots$ graphical representation of algorithm.

- asymptotic
- Flowchart (rep)

Question No: 1 (Marks: 1 ) - Please choose one who invented the quick sort

- C.A.R. Hoare Click here for detail

Question No: 1 (Marks: 1 ) - Please choose one
main elements to a divide-and-conquer

- Divide, conquer, combine (Page 27)

Question No: 1 (Marks: 1 ) - Please choose one
Mergesort is a stable algorithm but not an in-place algorithm.
True (Page 54)

- false

Question No: 1 (Marks: 1 ) - Please choose one
Counting sort the numbers to be sorted are in the range 1 to k where k is small.

- True (Page 57)
- False


## MIDTERM EXAMINATION

Spring 2007
CS502- Fundamentals of Algorithms
Question No: 1 (Marks: 1 ) - Please choose one
Total time for heapify is:

- $\mathrm{O}(\log \mathrm{n})$
- O (n $\left.\log _{2} \mathrm{n}\right)$
- $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
- O $(\log n) \quad$ Rep

Question No: 1 (Marks: 1 ) - Please choose one
If an algorithm has a complexity of $\log _{2} n+n \log 2 \boldsymbol{n}+\mathbf{n}$. we could say that it has complexity
$-\mathrm{O}(\mathrm{n})$

- $\mathrm{O}\left(\mathrm{n} \log _{2} \mathrm{n}\right)$
$-\mathrm{O}(3)$
- $\mathrm{O}\left(\log _{2}\left(\log _{2} n\right.\right.$
)) $-\mathrm{O}\left(\log _{2} \mathrm{n}\right)$
Question No: 1 (Marks: 1 ) - Please choose one
In RAM model instructions are executed
- One after another (Page 10)
- Parallel
- Concurrent
- Random

Question No: 1 (Marks: 1 ) - Please choose one
In selection algorithm, because we eliminate a constant fraction of the array with each phase, we get the

- Convergent geometric series (Page 37)
- Divergent geometric
series None of these
Question No: 1 (Marks: 1 ) - Please choose one
Due to left-complete nature of binary tree, heaps can be stored in
- Link list
- Structure
- Array (Page 40)
- None of above


# CS609- System Programming Midterm Quizzes (Quiz No. 1 \& 2) 

## Quiz No. 1 (04 - MAY - 2013)

Question No: 1 (Marks: 1 ) - Please choose one
The time assumed for each basic operation to execute on RAM model of computation is-----
Infinite
Continuous
Constant (Page 10)
Variable
Question No: 1 (Marks: 1 ) - Please choose one
If the indices passed to merge sort algorithm are not equal, the algorithm may return immediately.
True
False (Page 28)
Question No: 1 (Marks: 1 ) - Please choose one
Brute-force algorithm uses no intelligence in pruning out decisions.
True (Page 18)
False

Question No: 1 (Marks: 1 ) - Please choose one
In analysis, the Upper Bound means the function grows asymptotically no faster than its largest term.
True (Page 24)
False

Question No: 1 (Marks: 1 ) - Please choose one
For small values of $n$, any algorithm is fast enough. Running time does become an issue when $n$ gets large.
True (Page 14)
Fast

Question No: 1 (Marks: 1 ) - Please choose one
The array to be sorted is not passed as argument to the merge sort algorithm.
True
False
Question No: 1 (Marks: 1 ) - Please choose one
In simple brute-force algorithm, we give no thought to efficiency.
True (Page 11)
False

Question No: 1 (Marks: 1 ) - Please choose one
The ancient Roman politicians understood an important principle of good algorithm design that is plan-sweep algorithm.

True
False (Page 27) [Divide and Conquer]
Question No: 1 (Marks: 1 ) - Please choose one
In 2d-space a point is said to be $\qquad$ if it is not dominated by any other point in that space.

Member
Minimal
Maximal (Page 11)
Joint

Question No: 1 (Marks: 1 ) - Please choose one
An algorithm is a mathematical entity that is dependent on a specific programming language. True
(Page 7) False

Question No: 1 (Marks: 1 ) - Please choose one
The running time of an algorithm would not depend upon the optimization by the compiler but that of an implementation of the algorithm would depend on it.

True (Page 13)
False

## Question No: 1 (Marks: 1 ) - Please choose one

$\mathrm{F}(\mathrm{n})$ and $\mathrm{g}(\mathrm{n})$ are asymptotically equivalent. This means that they have essentially the same $\qquad$ for large n .

Results
Variables
Size
Growth rates (Page 23)
Question No: 1 (Marks: 1 ) - Please choose one
$8 \mathrm{n} 2+2 \mathrm{n}-3$ will eventually exceed $\mathrm{c} 2 *(\mathrm{n})$ no matter how large we make c 2 .
True (Page 25)
False
Question No: 1 (Marks: 1 ) - Please choose one
If we associate $(x, y)$ integers pair to cars where $x$ is the speed of the car and $y$ is the negation of the price. High y value for a car means a $\qquad$ car.
Fast
Slow
Expensive
Cheap (Page 11)

## Question No: 1 (Marks: 1 ) - Please choose one

The function $\mathrm{f}(\mathrm{n})=\mathrm{n}(\log \mathrm{n}+1) / 2$ is asymptotically equivalent to $\mathrm{n} \log \mathrm{n}$. Here Upper Bound means the function
$\mathrm{f}(\mathrm{n})$ grows asymptotically $\qquad$ faster than $n \log n$.
More
Quiet
Not (Page 24)
At least
Question No: 1 (Marks: 1 ) - Please choose one
After sorting in merge sort algorithm, merging process is invoked.
Select correct option:
True (Page 28)
False

## Question No: 1 (Marks: 1) - Please choose one

Asymptotic growth rate of the function is taken over $\qquad$ case running time. Select correct option:

Best
Average
Worst
(Page 14)
Normal
Question No: 1 (Marks: 1) - Please choose one
In analysis of $f(n)=n(n / 5)+n-10 \log n, f(n)$ is asymptotically equivalent to $\qquad$ .

```
n
2n
n+1
n2 (Page 23)
```

Question No: 1 (Marks: 1 ) - Please choose one
Algorithm is concerned with.......issues.
Macro
Micro
Both Macro \& Micro (Page 8)
Normal

## Question No: 1 (Marks: 1) - Please choose one

We cannot make any significant improvement in the running time which is better than that of brute-force algorithm.

True
False (Page 18)

## Question No: 1 (Marks: 1 ) - Please choose one

In addition to passing in the array itself to Merge Sort algorithm, we will pass in $\qquad$ other arguments which are indices.

Two (Page 28)
Three
Four
Five

## Question No: 1 (Marks: 1 ) - Please choose one

Consider the following Algorithm: Fun(n) \{ if (n=1) return 1 else return ( n * Fun(n-1)) \} Recurrence for the above algorithm is:

Question No: 1 (Marks: 1 ) - Please choose one
In analysis, the Lower Bound means the function grows asymptotically at least as fast as its largest term.
True (Page 24)
False

Question No: 1 (Marks: 1 ) - Please choose one
Efficient algorithm requires less computational.......
Memory
Running Time
Memory and Running Time (Page 9)
Energy
Question No: 1 (Marks: 1 ) - Please choose one The O-notation is used to state only the asymptotic $\qquad$ bounds.

Two
Lower
Upper (Page 25)
Both lower \& upper

## Question No: 1 (Marks: 1 ) - Please choose one

For the worst-case running time analysis, the nested loop structure containing one "for" and one "while" loop, might be expressed as a pair of $\qquad$ nested summations.

1
2 (Page 16)

## Question No: 1 (Marks: 1 ) - Please choose one

Before sweeping a vertical line in plane sweep approach, in start sorting of the points is done in increasing order of their $\qquad$ coordinates.

```
\(X\) (Page 18)
```

Y
Z
X \& Y

Question No: 1 (Marks: 1 ) - Please choose one
Brute-force algorithm for 2D-Maxima is operated by comparing $\qquad$ pairs of points.

Two
Some
Most
All (Page 18)
Question No: 1 (Marks: 1 ) - Please choose one
The function $f(n)=n(\log n+1) / 2$ is asymptotically equivalent to nlog $n$. Here Lower Bound means function $f(n)$ grows asymptotically at $\qquad$ as fast as nlog n .

Normal
Least (Page 23)
Most
All
Question No: 1 (Marks: 1 ) - Please choose one
The definition of Theta-notation relies on proving $\qquad$ asymptotic bound.

One
Lower
Upper
Both lower \& upper (Page 25) rep
Question No: 1 (Marks: 1 ) - Please choose one
In plane sweep approach, a vertical line is swept across the 2d-plane and $\qquad$ structure is used for holding the maximal points lying to the left of the sweep line.

## Array

Queue
Stack (Page 18)
Tree

Question No: 1 (Marks: 1 ) - Please choose one
Algorithm analysts know for sure about efficient solutions for NP-complete problems.
Select correct option:
True
False (Page 9)

## Quiz No. 1 (2012)

Question No: 1 of 10 (Marks: 1 ) - Please choose one
The number of nodes in a complete binary tree of height $h$ is
$\mathbf{2}^{\wedge}(\mathrm{h}+1)-1$ (Page 40)
$2 *(\mathrm{~h}+1)-1$
2 * $(\mathrm{h}+1)$
$\left((h+1)^{\wedge} 2\right)-1$
Question No: 1 of 10 (Marks: 1 ) - Please choose one
The analysis of Selection algorithm shows the total running time is indeed $\qquad$ in n ,
arithmetic
geometric linear
(Page 37)
orthogonal
Question No: 1 of 10 (Marks: 1 ) - Please choose one
A (an) $\qquad$ is a left-complete binary tree that conforms to the heap order
heap (Page 40)
binary tree binary search tree array

Question No: 1 of 10 (Marks: 1 ) - Please choose one Analysis of Selection algorithm ends up with,

T(n) (Page 37)
$\mathrm{T}(1 / 1+\mathrm{n})$
$\mathrm{T}(\mathrm{n} / 2)$
$\mathrm{T}(\mathrm{n} / 2)+\mathrm{n})$
Question No: 1 of 10 (Marks: 1 ) - Please choose one For the sieve technique we solve the problem,
recursively (Page 34)
mathematically
precisely
accurately

Question No: 1 of 10 (Marks: 1 ) - Please choose one
A heap is a left-complete binary tree that conforms to the $\qquad$
increasing order only
decreasing order only
heap order (Page 40)
$(\log n)$ order
Question No: 1 of 10 (Marks: 1 ) - Please choose one
In which order we can sort?
increasing order only
decreasing order only
increasing order or decreasing order (Page 39)
both at the same time

Question No: 1 of 10 ( Marks: 1 ) - Please choose one
Divide-and-conquer as breaking the problem into a small number of
pivot
Sieve
smaller sub problems (Page 34)
Selection

Question No: 1 of 10 (Marks: 1 ) - Please choose one For the heap sort we store the tree nodes in
level-order traversal (Page 40)
in-order traversal
pre-order traversal
post-order traversal
Question No: 1 of 10 (Marks: 1 ) - Please choose one
The sieve technique works in $\qquad$ as follows

Phases (Page 34)
numbers
integers
routines

# CS502 - Fundamentals of Algorithms Quiz No. 1 12-11-2012 

Question No: 1 of 10 (Marks: 1 ) - Please choose one
We do sorting to,
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order
Question No: 1 of 10 (Marks: 1 ) - Please choose one
Heaps can be stored in arrays without using any pointers; this is due to the $\qquad$ nature of the binary tree,
left-complete(Page 40)
right-complete
tree nodes
tree leaves
Question No: 1 of 10 (Marks: 1 ) - Please choose one Sieve Technique can be applied to selection problem?

True (Page 35)
False
Question No: 1 of 10 (Marks: 1 ) - Please choose one
In Sieve Technique we do not know which item is of interest
True (Page 34)
False
Question No: 1 of 10 ( Marks: 1 ) - Please choose one
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent $\qquad$ series in the analysis,
linear
arithmetic
geometric (Page 37)
exponent

Question No: 1 of 10 (Marks: 1 ) - Please choose one For the heap sort, access to nodes involves simple $\qquad$ operations.
arithmetic (Page 41)
binary
algebraic
logarithmic
Question No: 1 of 10 (Marks: 1 ) - Please choose one Slow sorting algorithms run in,

T(n^2) (Page 39)
T(n)
$T(\log n)$
Question No: 1 of 10 (Marks: 1 ) - Please choose one
In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as, T(n)
$\mathrm{T}(\mathrm{n} / 2)$
$\log n($ Page 37)
$\mathrm{n} / 2+\mathrm{n} / 4$
Question No: 1 of 10 (Marks: 1 ) - Please choose one
The sieve technique is a special case, where the number of sub problems is just
5
many
1 (Page 34)
few

Question No: 1 of 10 (Marks: 1) - Please choose one
How many elements do we eliminate in each time for the Analysis of Selection algorithm?
(n/2)+n elements
(n/2) elements (Page 37)
n/ 4 elements
2 n elements
Question No: 1 of 10 (Marks: 1 ) - Please choose one
One of the clever aspects of heaps is that they can be stored in arrays without using any $\qquad$ . pointers (Page 40)
constants
variables
functions

Question No: 1 of 10 (Marks: 1 ) - Please choose one
How much time merge sort takes for an array of numbers?
$\mathrm{T}\left(\mathrm{n}^{\wedge} 2\right)$
T(n)
$T(\log n)$
T(n $\log n)($ Page 40)
Question No: 1 of 10 (Marks: 1 ) - Please choose one
The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of, divide-and-conquer (Page 34)
decrease and conquer
greedy nature 2 -
dimension Maxima
Question No: 1 of 10 (Marks: 1 ) - Please choose one
In Sieve Technique we do not know which item is of interest
True (Page 34) rep
False

Question No: 1 of 10 (Marks: 1 ) - Please choose one Theta asymptotic notation for $\mathrm{T}(\mathrm{n})$ :

Set of functions described by: $\mathrm{c} 1 \mathrm{~g}(\mathrm{n})$ Set of functions described by $\mathrm{c} 1 \mathrm{~g}(\mathrm{n})>=\mathrm{f}(\mathrm{n})$ for c 1 s
Theta for $T(n)$ is actually upper and worst case comp (Not sure)
Set of functions described by:
clg(n)
Question No: 1 of 10 (Marks: 1 ) - Please choose one
Memoization is?
To store previous results for future use
To avoid this unnecessary repetitions by writing down the results of recursive calls and looking them up again if we need them later (page 74)
To make the process accurate
None of the above
Question No: 1 of 10 (Marks: 1 ) - Please choose one
Which sorting algorithm is faster
O (n $\log n$ ) Page 26
$\mathrm{O} \mathrm{n}^{\wedge} 2$
O ( $\mathrm{n}+\mathrm{k}$ )
On^3

Question No: 1 of 10 (Marks: 1 ) - Please choose one
Quick sort is
Stable \& in place
Not stable but in place (Page 54)
Stable but not in place
Some time stable \& some times in place
Question No: 1 of 10 (Marks: 1 ) - Please choose one
One example of in place but not stable algorithm is
Merger Sort
Quick Sort (Page 54)
Continuation Sort
Bubble Sort
Question No: 1 of 10 (Marks: 1 ) - Please choose one
Cont sort is suitable to sort the elements in range 1 to k
K is Large
K is not known
K may be small or large
$K$ is small (Page 57)
Question No: 1 of 10 (Marks: 1 ) - Please choose one
In place stable sorting algorithm.
If duplicate elements remain in the same relative position after sorting (Page 54)
One array is used
More than one arrays are required
Duplicating elements not handled
Question No: 1 of 10 (Marks: 1 ) - Please choose one
Which may be a stable sort?
Merger
Insertion (Page 54)
Both above
None of the above
Question No: 1 of 10 (Marks: 1 ) - Please choose one
An in place sorting algorithm is one that uses $\qquad$ arrays for storage

Two dimensional arrays
More than one array
No Additional Array (Page 54)
None of the above

## Question No: 1 of 10 (Marks: 1 ) - Please choose one

Sieve Technique applies to problems where we are interested in finding a single item from a larger set of
n items (Page 34)
phases
pointers
constant
Question No: 1 of 10 (Marks: 1 ) - Please choose one
Sorting is one of the few problems where provable $\qquad$ bonds exits on how fast we can sort,
upper
lower (Page 39)
average
$\log n$
Question No: 1 of 10 (Marks: 1 ) - Please choose one
Counting sort has time complexity:
O(n) (Page 58)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
$\mathrm{O}(\mathrm{k})$
O(nlogn)
Question No: 1 of 10 (Marks: 1 ) - Please choose one
The running time of quick sort depends heavily on the selection of
No of inputs
Arrangement of elements in array
Size o elements
Pivot elements (Page 49)
Question No: 1 of 10 (Marks: 1 ) - Please choose one
Which may be stable sort:
Bubble sort
Insertion sort
Both of above (Page 54)

## Question No: 1 of 10 (Marks: 1 ) - Please choose one

One Example of in place but not stable sort is

## Quick (Page 54)

Heap
Merge
Bubble
Question No: 1 of 10 (Marks: 1 ) - Please choose one In Quick Sort Constants hidden in $\mathrm{T}(\mathrm{n} \log \mathrm{n})$ are

Large
Medium
Small Click here for detail
Not Known

Question No: 1 of 10 (Marks: 1 ) - Please choose one
Quick sort is based on divide and conquer paradigm; we divide the problem on base of pivot element and:
There is explicit combine process as well to conquer the solution.
No work is needed to combine the sub-arrays, the array is already sorted
Merging the sub arrays
None of above. (Page 51)
Ref: - random choices for the pivot element and each choice have an equal probability of $1 / n$ of occurring. So we can modify the above recurrence to compute an average rather than a max

## CS501-Quiz No. 2 (Spring 2013)

Question No: 1 of 10 (Marks: 1 ) - Please choose one
A point p in 2-dimensional space is usually given by its integer coordinate(s) $\qquad$
p.x only
p.y only
p.x \& p.z
p.x \& p.y (Page 10)

Question No: 1 of 10 (Marks: 1 ) - Please choose one
In $\qquad$ we have to find rank of an element from given input.

Merge sort algorithm
Selection problem (Page 34)
Brute force technique
Plane Sweep algorithm
Question No: 1 of 10 ( Marks: 1 ) - Please choose one
In Heap Sort algorithm, if heap property is violated $\qquad$
We call Build heap procedure
We call Heapify procedure
We ignore
Heap property can never be violated
Question No: 1 of 10 ( Marks: 1 ) - Please choose one
Upper bound requires that there exist positive constants c 2 and n 0 such that $\mathrm{f}(\mathrm{n})$ $\qquad$ c2n for all $\mathrm{n}<=\mathrm{n} 0$ (ye question ghalat lag raha hai mujhae

Less than
Equal to or Less than
(Page 25)
Equal or Greater than
Greater than

Question No: 1 of 10 (Marks: 1 ) - Please choose one A RAM is an idealized algorithm with takes an infinitely large random-access memory.

True
False (Page 10)
$\square$

## Question No: 1 of 10 (Marks: 1 ) - Please choose one

$\qquad$ is one of the few problems, where provable lower bounds exist on how fast we can sort.

Searching
Sorting (Page)
Both Searching \& Sorting
Graphing
Question No: 1 of 10 (Marks: 1 ) - Please choose one
Floor and ceiling are $\qquad$ to calculate while analyzing algorithms.

Very easy
Usually considered difficult (Page 31)
Question No: 1 of 10 (Marks: 1 ) - Please choose one
In Heap Sort algorithm, the maximum levels an element can move upward is $\qquad$
Theta $(\log n) \quad($ Page 43)
Order $(\log \mathrm{n})$
Omega $(\log n)$
O (1) i.e. Constant time
Question No: 1 of 10 (Marks: 1 ) - Please choose one
A point p in 2-dimensional space is usually given by its integer coordinate(s) $\qquad$
p.x only p.y
only p.x \& p.z
p.x \& p.y (Page 17)

Question No: 1 of 10 (Marks: 1 ) - Please choose one
In Heap Sort algorithm, the total running time for Heapify procedure is $\qquad$
Theta $(\log n)($ Page 43)
Order $(\log \mathrm{n})$
Omega $(\log n)$
O (1) i.e. Constant time
Question No: 1 of 10 (Marks: 1 ) - Please choose one
Algorithm is a mathematical entity, which is independent of a specific machine and operating system.
True
(Page 7) False

Question No: 1 of 10 (Marks: 1 ) - Please choose one
While Sorting, the ordered domain means for any two input elements x and y $\qquad$ satisfies only.
$\mathrm{x}<\mathrm{y}$
$x>y$
$x=y$
All of the above (Page 39)
Question No: 1 of 10 (Marks: 1 ) - Please choose one
Quick sort is best from the perspective of Locality of reference.
True (Page 9)
False

Question No: 1 of 10 (Marks: 1 ) - Please choose one
Sorting can be in $\qquad$
Increasing order only
Decreasing order only
Both Increasing and Decreasing order (Page 39)
Random order
Question No: 1 of 10 (Marks: 1 ) - Please choose one
In Heap Sort algorithm, we build $\qquad$ for ascending sort.

Max heap
(Page 41)
Min heap
Question No: 1 of 10 (Marks: 1 ) - Please choose one
In Sieve Technique, we know the item of interest.
True
False (Page 34)
Question No: 1 of 10 (Marks: 1 ) - Please choose one
While solving Selection problem, in Sieve technique we partition input data $\qquad$
In increasing order
In decreasing order
According to Pivot
(Page 35)
Randomly

Question No: 1 of 10 (Marks: 1 ) - Please choose one
In pseudo code, the level of details depends on intended audience of the algorithm.
True (Page 12)
False

Question No: 1 of 10 (Marks: 1 ) - Please choose one
The sieve technique works where we have to find $\qquad$ item(s) from a large input.

Single (Page 34)
Two
Three
Similar
Question No: 1 of 10 ( Marks: 1 ) - Please choose one
If the indices passed to merge sort algorithm are $\qquad$ ,then this means that there is only one element to sort.

Small
Large
Equal
(Page 28)
Not Equal
( Marks: 1 ) - Please choose one
1.Random access machine or RAM is a/an

Machines build by Al-Khwarizmi
Mechanical machine
Electronics machine
Mathematical model (lec\#2 pg\#10)
2. is a graphical representation of an algorithm
$\Sigma$ notation
$\Theta$ notation
Flowchart ( refrence cls10 chapter no1)
Asymptotic notation
3. A RAM is an idealized machine with $\qquad$ random-access memory. 256MB
512 MB
an infinitely large (page\#10)
100GB
4.What type of instructions Random Access Machine (RAM) can execute? Choose best

Algebraic and logic
Geometric and arithmetic
Arithmetic and logic(page\#10)
Parallel and recursive
5.What will be the total number of max comparisons if we run brute-force maxima algorithm with $n$ elements.
${ }^{*} n^{2}$

$$
\begin{aligned}
& *_{n}{ }^{\frac{n}{2}} \\
& *_{n} \\
& *_{n}{ }^{8}
\end{aligned}
$$

Answe is option 3
6. What is the solution to the recurrence $T(n)=T(n / 2)+n$. O(logn) (not sure)
$\mathrm{O}(\mathrm{n})$

> Solved By Rabia Rauf

O(nlogn)
$\mathrm{O}\left(n^{2}\right)$
7. Consider the following code:

For $(\mathbf{j}=1 ; \mathbf{j}<\mathbf{n} ; \mathbf{j}++$ )
$\operatorname{For}(\mathrm{k}=1 ; \mathrm{k}<15 ; \mathrm{k}++$ )
For(l=5; l<n; l++)
\{
Do_something_constant();
\}
What is the order of execution for this code.
O(n)
$\mathbf{O}\left(n^{3}\right)$
$\mathbf{O}\left(n^{2} \log \right.$
n) $\mathbf{O}\left(n^{2}\right)$
8. Consider the following Algorithm:

Factorial (n)\{
if ( $\mathrm{n}=1$ )
return 1
else
return ( n * $\operatorname{Factorial(n-1))~}$
Recurrence for the following algorithm is:
$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+1$
$\mathrm{T}(\mathrm{n})=\mathrm{nT}(\mathrm{n}-1)+1$
$T(n)=T(n-1)+n$
$T(n)=T(n(n-1))+1$ (lec\#9)
9. What is the total time to heapify?
(Olog n) (page\#43)
$(\mathrm{n} \log \mathrm{n})($
$\left.n^{2} \log n\right)($
$\log ^{2} n$ )
10.When we call heapify then at each level the comparison performed takes time It will take (1)
Time will vary according to the nature of input
data It can not be predicted
It will take $(\log n)$
11.In Quick sort, we don't have the control over the sizes of recursive calls

True(page\#49)
False
Less information to decide
Either true or false

## 12.Is it possible to sort without making

 comparisons? Yes (pge\#57)No
Question No: 13 ( Marks: 1 ) - Please choose one
If there are $n^{2}$ entries in edit distance matrix then the total running
(1)
$\left(n^{2}\right)(p g \# 84)$
(n)
( $\mathrm{n} \log \mathrm{n}$ )
14. For Chain Matrix Multiplication we can not use divide and conquer approach because, We do not know the optimum $k$ (pg\#86)
We use divide and conquer for sorting only
We can easily perform it in linear time
Size of data is not given
15.The Knapsack problem belongs to the domain of $\qquad$ problems.
Optimization (pg\#91)
NP Complete
Linear Solution
Sorting
16.Suppose we have three items as shown in the following table, and suppose the capacity of the knapsack is 50 i.e. $W=50$.
The optimal solution is to pick

| item | value | weight |
| :--- | :--- | :--- |
| 1 | 60 | $\mathbf{1 0}$ |
| 2 | 100 | 20 |
| 3 | $\mathbf{1 2 0}$ | 30 |

Items 1 and 2
Items 1 and 3
Items 2 and 3
None of these

17 - What type of instructions Random Access Machine (RAM) can execute? Choose best answer
4. Algebraic and logic
5. Geometric and arithmetic
3. Arithmetic and logic
(rep)
4.Parallel and recursive

Correct Choice : 3 From Lectuer \# 1
18 - Random access machine or RAM is a/an
5. Machine build by Al-Khwarizmi
6. Mechanical machine
7. Electronics machine
4. Mathematical model (rep)

Correct Choice : 4 From Lectuer \# 1

19- $\qquad$ is a graphical representation of an algorithm
5. Segma Notation
6. Thita Notation
3.Flowchart (rep)
4.Asymptotic notation

Correct Choice : 3 From Lectuer \# 2

20 - What will be the total number of max comparisons if we run brute-force maxima? algorithm with n elements?
5. $\mathrm{n}^{\wedge} 2$
6. $n^{\wedge} n / 2$
7. n
8. $n^{\wedge} 8$

Correct Choice : 1 From Lectuer \# 3
21 - function is given like $4 n^{\wedge} 4+5 n^{\wedge} 3+n$ what is the run time of this
5. theata( $\left(\mathrm{n}^{\wedge} 4\right)$
6. theata $\left(\mathrm{n}^{\wedge} 3\right)$
7. theata $\left(4 n^{\wedge} 4+5 n^{\wedge} 3\right)$
8. theata $\left(4 n^{\wedge} 4+5 n^{\wedge} 3\right)$

Correct Choice : 1 From Lectuer \# 4
22 - Let us say we have an algorithm that carries out $\mathbf{N} 2$ operations for an input of size $\mathbf{N}$.
Let us say that a computer takes 1 microsecond ( $1 / 1000000$ second) to carry out one operation. How long does the algorithm run for an input of size 3000 ?
5.90 seconds
6.9 seconds
7. 0.9 seconds
8. 0.09 seconds

Correct Choice : $\mathbf{2}$ From Lectuer \# 4
23 - The appropriate big $\theta$ classification of the given function. $f(n)=4 n 2+97 n+1000$ is
4. ?(n)
5. $\mathrm{O}\left(2^{\wedge} \mathrm{n}\right)$
6. $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
7. $\mathrm{O}\left(\mathrm{n}^{\wedge} 2 \operatorname{logn}\right)$

Correct Choice : 3 From Lectuer \# 4
24-Which sorting algorithm is faster
5. O ( $\mathrm{n} \log \mathrm{n}$ )
6. $O \mathrm{n}^{\wedge} 2$
7. O (n) (pg\#26)
8. On^3

Correct Choice : 3 From Lectuer \# 5

25 - If algorithm $A$ has running time $7 n^{\wedge} \mathbf{2}+2 n+3$ and algorithm $B$ has running time $\mathbf{2 n}{ }^{\wedge} \mathbf{2 ,}$ then

1. Both have same asymptotic time complexity
2. A is asymptotically greater
3. B is asymptotically greater
4. None of others

Correct Choice : 1 From Lectuer \# 6
26 - What is the solution to the recurrence $T(n)=T(n / 2)+n$.

1. O(logn)
2. O(n)
3. O(nlogn)
4. $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$

Correct Choice : $\mathbf{1}$ From Lectuer \# 8

27- - How much time merge sort takes for an array of numbers?

1. ( $\left.\mathrm{n}^{\wedge} 2\right)$
2. T(n)
3. $\mathrm{T}(\log \mathrm{n})$
4. $T(n \log n)$

Correct Choice : $\mathbf{2}$ From Lectuer \# 8
28 - Consider the following Algorithm:
Factorial (n) \{
if $(\mathrm{n}=1)$
return 1
else
return (n * Factorial(n-1))
\}
Recurrence for the following algorithm is:
4. $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+1$
5. $\mathrm{T}(\mathrm{n})=\mathrm{nT}(\mathrm{n}-1)+1$
6. $T(n)=T(n-1)+n$
7. $T(n)=T(n(n-1))+1$

## Correct Choice : 4 From Lectuer \# 9

29 - For the Sieve Technique we take time

1. T(nk) . (pg\#34)
2. $\mathrm{T}(\mathrm{n} / 3)$
3. $\mathrm{n}^{\wedge} 2$
4. $\mathrm{n} / 3$

Correct Choice: 1 From Lectuer \# 10

30 - Sieve Technique applies to problems where we are interested in finding a single item from a larger set of

1. n items
2. phases
3. pointers
4. constant

Correct Choice : 1 From Lectuer \# 10

31 - In Sieve Technique we do not know which item is of interest
3. FALSE
4. TRUE(pg\#34)

Correct Choice : $\mathbf{2}$ From Lectuer \# 10
32 - For the sieve technique we solve the problem,

1. recursively (pg\#34)
2. mathematically
3. accurately
4. precisely

Correct Choice : 1 From Lectuer \# 10
33 - For the Sieve Technique we take time
4. TO(nk) (pg\#34)
5. $\mathrm{T}(\mathrm{n} / 3)$
6. $\mathrm{n}^{\wedge} 2$
7. $n / 3$

Correct Choice : 1 From Lectuer \# 10
34 - How many elements do we eliminate in each time for the Analysis of Selection algorithm?
5. n/2 elements
6. (n/2) + n elements
7. n/ 4 elements
8. n elements

Correct Choice : $\mathbf{4}$ From Lectuer \# 10
35- Sieve Technique applies to problems where we are interested in finding a single item from a larger set of $\qquad$

1. n items
2. phases
3. pointers
4. constant

Correct Choice : $\mathbf{1}$ From Lectuer \# 10
36 - The analysis of Selection algorithm shows the total running time is indeed $\qquad$ in
n,

1. arithmetic
2. geometric
3. linear (pg\#37)
4. orthogonal

Correct Choice : 3 From Lectuer \# 10

37- The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,

1. divide-and-conquer (pg\#34)
2. decrease and conquer
3. greedy nature
4. 2-dimension Maxima

Correct Choice : 1 From Lectuer \# 10
38 - The sieve technique works in $\qquad$ as follows

1. phases (pg\#34)
2. numbers
3. integers
4. routines

Correct Choice : 1 From Lectuer \# 10
39-A (an) $\qquad$ is a left-complete binary tree that conforms to the heap order

1. heap (pg\#40)
2. binary tree
3. binary search tree
. array
Correct Choice : 1 From Lectuer \# 11

40 - For the heap sort, access to nodes involves simple $\qquad$ operations.

1. arithmetic (pg\#41)
2. binary
3. algebraic
4. logarithmic

## Correct Choice : 1 From Lectuer \# 11

41 - We do sorting to,

1. keep elements in random positions
2. keep the algorithm run in linear order
3. keep the algorithm run in $(\log n)$ order
4. keep elements in increasing or decreasing order (pg\#39)

Correct Choice : 1 From Lectuer \# 11
42 - For the heap sort we store the tree nodes in

1. level-order traversal (pg\#40)
2. in-order traversal
3. pre-order traversal
4. post-order traversal

Correct Choice : 1 From Lectuer \# 11

43 - In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,

1. T(n)
2. $\mathrm{T}(\mathrm{n} / 2)$
3. $\log \mathrm{n} \quad(\mathrm{pg} \# 37)$
4. $\mathrm{n} / 2+\mathrm{n} / 4$

## Correct Choice : 3 From Lectuer \# 11

44 - In which order we can sort?

1. increasing order only
2. decreasing order only
3. increasing order or decreasing order (pg\#39)
4. both at the same time

Correct Choice : 3 From Lectuer \# 11

46 - One of the clever aspects of heaps is that they can be stored in arrays without using any $\qquad$

1. pointers (pg\#40)
2. constants
3. variables
4. functions

Correct Choice : 1 From Lectuer \# 1
47 - Slow sorting algorithms run in,

1. $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right) \quad$ (pg\#39)
2. $\mathrm{O}(\mathrm{n})$
3. $\mathrm{O}(\log n)$
4. $O(n \log n)$

48- What is the total time to heapify?

1. ? (log n) (pg\#43)
2.?( $\mathrm{n} \log \mathrm{n}$ )
3.? $\left(n^{\wedge} 2 \log n\right)$
4.? $\left(\log ^{\wedge} 2 n\right)$

Correct Choice : $\mathbf{1}$ From Lectuer \# 12

49 - When we call heapify then at each level the comparison performed takes time It will take $O$ (1)

1. Time will vary according to the nature of input data
2. It can not be predicted
3. It will take $\mathbf{O}(\log n)$
4. None of the Given

Correct Choice : $\mathbf{3}$ From Lecture \# 12
50 - After partitioning array in Quick sort, pivot is placed in a position such that

1. Values smaller than pivot are on left and larger than pivot are on right (
2. Values larger than pivot are on left and smaller than pivot are on right
3. Pivot is the first element of array
4. Pivot is the last element of array

Correct Choice : $\mathbf{2}$ From Lectuer \# 13
51 - The running time of quick sort depends heavily on the selection of 1. No of inputs
2. Arrangement of elements in array
3. Size o elements
4. Pivot element (pg\#49)

Correct Choice : 4 From Lectuer \# 13
52- In Quick Sort Constants hidden in $T(n \log n)$ are

1. Large
2. Medium
3. Small
4. Not Known

Correct Choice : $\mathbf{3}$ From Lectuer \# 14

53 - Is it possible to sort without making comparisons?

1. Yes (pg\#57)
2. No

Correct Choice : 1 From Lectuer \# 15

## 54 - Merge sort is stable sort, but not an in-place algorithm

1. TRUE (pg\#54)
2. FALSE

Correct Choice : 1 From Lectuer \# 15

55 - In counting sort, once we know the ranks, we simply $\qquad$ numbers to their final positions in an output array.

1Delete
2 copy
3 Mark
4 arrange
Correct Choice : $\mathbf{2}$ From Lectuer \# 15
1.

56 - An in place sorting algorithm is one that uses $\qquad$ arrays for storage

1. Two dimensional arrays
2. More than one array
3.No Additional Array (pg\#54)
4.None of the above

Correct Choice : 3 From Lectuer \# 15
2.

57 - Continuation/counting sort is suitable to sort the elements in range 1 to k

1. K is Large
2. K is not known
3. K may be small or large
4. $K$ is small (pg\#57)

Correct Choice : $\mathbf{4}$ From Lectuer \# 15
3.

58 - In stable sorting algorithm.

1. If duplicate elements remain in the same relative position after sorting
2. One array is used
3. More than one arrays are required
4. Duplicating elements not handled

Correct Choice : 1 From Lectuer \# 15
4.

59 - One example of in place but not stable algorithm is

1. Merger Sort
2. Quick Sort
3. Continuation Sort
4. Bubble Sort

Correct Choice : 2 From Lecture \# 15
5.

60 - One example of in place but not stable algorithm is

1. Merger Sort
2. Quick Sort (pg\#54)
3. Continuation Sort
4. Bubble Sort

Correct Choice : $\mathbf{2}$ From Lecture \# 15

61- One of the clever aspects of heaps is that they can be stored in arrays without using any $\qquad$ .

1. pointers (rep)
2. constants
3. variables
. functions
Correct Choice : 1 From Lecture \# 15

## 62 - Quick sort is

1. Stable \& in place
2. Not stable but in place (pg\#54)
3. Stable but not in place
4. Some time stable \& some times in place

63 - Quick sort is

1. Stable \& in place
2. Not stable but in place (rep)
3. Stable but not in place
4. Some time stable \& some times in place

Correct Choice : $\mathbf{2}$ From Lectuer \# 15
64 - Which may be a stable sort?

1. Merger
2. Insertion
3. Both above (pg\#54)
4.None of the above

Correct Choice : 3 From Lectuer \# 15
67 - Which of the following sorting algorithms is stable?
(i) Merge sort,
(ii) Quick sort,
(iii) Heap sort,
(iv) Counting Sort.

1. Only i
2. Only ii
3. Both i and ii
4. Both iii and iv

Correct Choice : 1 From Lectuer \# 15
68 Mergesort is a stable algorithm but not an in-place algorithm.

1. TRUE (pg\#54)
2. FALSE

Correct Choice : 1 From Lectuer \# 16
69 - Memorization is?

1. To store previous results for future use
2. To avoid this unnecessary repetitions by writing down the results of recursive calls and looking them up again if we need them later (pg\#74)
3. To make the process accurate
4. None of the above

Correct Choice : $\mathbf{2}$ From Lectuer \# 16

70 - Dynamic programming algorithms need to store the results of intermediate
sub-problems.

1. TRUE (pg\#75)
2. FALSE

Correct Choice : 1 From Lectuer \# 17
71 - Dynamic programming uses a top-down approach.

1. TRUE
2. FALSE

Correct Choice : $\mathbf{2}$ From Lectuer \# 17
73- The edit distance between FOOD and MONEY is

1. At most four (pg\#76)
2. At least four
3. Exact four
4. Wrong

Correct Choice : 1 From Lectuer \# 17
74- The edit distance between FOOD and MONEY is

1. At most four
2. At least four
3. Exact four
4. Wrong

Correct Choice : $\mathbf{1}$ From Lectuer \# 17
75 - If there are $O\left(n^{\wedge} 2\right)$ entries in edit distance matrix then the total running time is 1. O (1)
2. O ( $\mathrm{n}^{\wedge} 2$ ) (rep)
3. O (n)
4. O ( $\mathrm{n} \log \mathrm{n}$ )

Correct Choice : 2 From Lectuer \# 18
76-A p x q matrix A can be multiplied with a q x r matrix B. The result will be a p x r matrix C. There are ( $\mathrm{p} . \mathrm{r}$ ) total entries in C and each takes $\qquad$ to compute.

1. O (q) (pg\#84)
2. O (1)
3. O ( $\left.\mathrm{n}^{\wedge} 2\right)$
4. O ( $\mathrm{n}^{\wedge} 3$ )

Correct Choice : 1 From Lectuer \# 19
77 - For Chain Matrix Multiplication we can not use divide and conquer approach because,

1. We do not know the optimum $k$ (rep)
2. We use divide and conquer for sorting only
3. We can easily perform it in linear time
4. Size of data is not given

Correct Choice : 1 From Lectuer \# 19

78 - A p x q matrix A can be multiplied with a q x r matrix B. The result will be a p x r matrix C. There are ( $\mathrm{p} . \mathrm{r}$ ) total entries in C and each takes $\qquad$ to compute.

1. O (q) (rep)
2. O (1)
3. O ( $\left.\mathrm{n}^{\wedge} 2\right)$
4. O ( $n^{\wedge} 3$ )

Correct Choice : 1 From Lectuer \# 19
79 - The Knapsack problem belongs to the domain of $\qquad$ problems.

1. Optimization rep
2. NP Complete
3. Linear Solution
4. Sorting

Correct Choice : 1 From Lectuer \# 21
80 The codeword assigned to characters by the Huffman algorithm have the property that no codeword is the postfix of any other.

1. TRUE
2. FALSE

## Correct Choice : 2 From Lectuer \# 22

81 - The greedy part of the Huffman encoding algorithm is to first find two nodes with larger frequency.

1. TRUE
2. FALSE

Correct Choice : $\mathbf{2}$ From Lectuer \# 22
$\mathbf{8 2}$ - An optimization problem is one in which you want to find,

1. Not a solution
2. An algorithm
3. Good solution
4. The best solution

Correct Choice : $\mathbf{4}$ From Lectuer \# 22
83- We do sorting to,
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order (rep)
84-Heaps can be stored in arrays without using any pointers; this is due to the $\qquad$ nature of the binary tree,
left-complete
right-complete
tree nodes tree
leaves

85- Sieve Technique can be applied to selection problem?
True ( pg\#35)
False
86-A heap is a left-complete binary tree that conforms to the $\qquad$
increasing order only
decreasing order only
heap order (pg40)
$(\log n)$ order

87- A (an) $\qquad$ is a left-complete binary tree that conforms to the heap order heap ( pg\#40)
binary tree binary
search tree array
88- Divide-and-conquer as breaking the problem into a small number of Select correct option:
pivot
Sieve
smaller sub problems (pg27)
Selection

89- In Sieve Technique we do not know which item is of interest Select correct option:

True (rep)
False

90- The recurrence relation of Tower of Hanoi is given below $T(n)=\{1$ if $n=1$ and $2 T(n-1)$ if $n>1$ In order to move a tower of 5 rings from one peg to another, how many ring moves are required?
Select correct option:
16
10
32
31 (not sure)
91- In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent $\qquad$ series in the analysis,
Select correct option:
linear
arithmetic
geometric (pg37)
exponent

92- In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent $\qquad$ series in the analysis,
Select correct option:
linear arithmetic
geometric (rep)
exponent

93-In inplace sorting algorithm is one that uses array for storage :

1. An additional array
2. No additional array (rep)
3. Both of the above
4. More then one array of one dimension.

94-The running time of quick sort depends heavily on the selection of.

1. No of inputs
2. Arrangement of element in array
3.Size Of element
3. Pivot element rep

95-For the sieve technique we solve the problem.
Recursively rep
mathematically
precisely
accurately
96-The sieve technique works in $\qquad$ as follows
Phases rep
numbers
integers
routines
97-Slow sorting algorithms run in,
T(n^2) rep
T(n)
$T(\log n)$
98-A (an) $\qquad$ is a left-complete binary tree that conforms to the heap order
Heap rep binary tree binary search
tree array

99-In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent $\qquad$ series in the analysis,
linear
arithmetic
geometric rep
exponent
100-In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as T(n)
T(n/2)
$\log n(p g \# 37)$
$\mathrm{n} / 2+\mathrm{n} / 4$

## 101-In which order we can sort?

Select correct option:
increasing order only
decreasing order only
increasing order or decreasing order (rep)
both at the same time

102-The recurrence relation of Tower of Hanoi is given below $T(n)=\{1$ if $n=1$ and $2 T(n-1)$ if $n>1$ In order to move a tower of 5 rings from one peg to another, how many ring moves are required?
16
10
32
31
103-Analysis of Selection algorithm ends up with,
$\theta(\mathrm{n}) \quad$ rep
$\mathrm{T}(1 / 1+\mathrm{n})$
$\mathrm{T}(\mathrm{n} / 2)$
$\mathrm{T}((\mathrm{n} / 2)+\mathrm{n})$

## 104-Memorization is?

1. To store previous results for future use
2. To avoid this unnecessary repetitions by writing down the results of recursive calls and looking them up again if we need them later (rep)
3. To make the process accurate
4. None of the above

105-Which sorting algorithm is faster

1. O ( $\mathrm{n} \log \mathrm{n}$ )
2. $O \mathrm{n}^{\wedge} 2$
3. O (n) rep
4. $\mathrm{O} \mathrm{n}^{\wedge} 3$

106-Quick sort is

1. Stable \& in place
2. Not stable but in place (rep)
3. Stable but not in place
4. Some time stable \& some times in place

107-One example of in place but not stable algorithm is

1. Merger Sort
2. Quick Sort rep
3. Continuation Sort
4. Bubble Sort

## 108-In Quick Sort Constants hidden in $T(n \log n)$ are

1. Large
2. Medium
3. Small rep
4. Not Known

109-Counting sort is suitable to sort the elements in range 1 to $k$

1. K is Large
2. K is not known
3. K may be small or large
4. $K$ is small rep

## 110-In stable sorting algorithm.

1. If duplicate elements remain in the same relative position after sorting rep
2. One array is used
3. More than one arrays are required
4. Duplicating elements not handled

111-Which may be a stable sort?

1. Merger
2. Insertion
3.Both above rep
4.None of the above

112-An in place sorting algorithm is one that uses $\qquad$ arrays for storage

1. Two dimensional arrays
2. More than one array
3.No Additional Array rep
4.None of the above

113-Counting sort has time complexity of ?

1. O(n)
2. $\mathrm{O}(\mathrm{n}+\mathrm{k})$
3. $O(n \log n)$
4. $\mathrm{O}(\mathrm{k})$

114-We do sorting to,
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order rep
115-Divide-and-conquer as breaking the problem into a small number of pivot
Sieve
smaller sub problems rep
Selection

116-The analysis of Selection algorithm shows the total running time is indeed $\qquad$ in n , arithmetic
geometric
linear pg\#37
orthogonal
117-How many elements do we eliminate in each time for the Analysis of Selection algorithm?
n / 2 elements
(pg\#37)
(n/2) +n elements
n/ 4 elements
2 n elements
118-Sieve Technique can be applied to selection problem?
True
rep
FALSE

119- For the heap sort we store the tree nodes in
level-order traversal rep
in-order traversal
pre-order traversal
post-order traverse
120-In RAM model instructions are executed

One after another pg\#10
Parallel
Concurrent
Random

121-In selection algorithm, becausewe eliminate a constant fraction of the array with each phase, we get the
Convergent geometric series rep
Divergent geometric series None
of these

122-Due to left-complete nature of binary tree, heaps can be stored in
Link list
Structure
Array
None of above

123-If algorithm $A$ has running time $\mathbf{7 n 2}+2 n+3$ and algorithm $B$ has running time $2 n 2$, then
Both have same asymptotic time complexity rep A is
asymptotically greater
$B$ is asymptotically greater
None of others
124-Which of the following sorting algorithms is stable?
(i) Merge sort,
(ii) Quick sort,
(iii) Heap sort,
(iv) Counting Sort.

Only i
Only ii
Both i and ii
Both iii and iv
125-Execution of the following code fragment
int Idx;
for $(\operatorname{Idx}=0 ; \operatorname{Idx}<\mathrm{N} ; \operatorname{Idx}++$ )
\{
cout << A $[$ Idx $] \ll$ endl;
\}
is best described as being
$\mathrm{O}(\mathrm{N})$
O(N2)
$\mathrm{O}(\log \mathrm{N})$
$\mathrm{O}(\mathrm{N} \log \mathrm{N})$
126-The edit distance between FOOD and MONEY is
At most four rep
At least four

## Exact four

## 127-Consider the following recurrence relation

Then $\mathrm{T}(5)$ is
257579

128-How much time merger sort takes for an array of numbers?
T(n^2)
T(n) (pg\#29)
$\mathrm{T}(\log \mathrm{n})$
$T(n \log n)$
129-Divide-and-Conquer is as breaking the problem into a small number of Smaller Sub Problems rep
Pivot
Sieve
Solutions.

130-The Sieve Sequence is a special case where the number of smaller subproblems is
just $\qquad$ .4
Many
1
Few

131-How many elements do we eliminate each time for the Analysis of Selection Algorithm?
(n / 2)+n Elements
n/2 Elements
n / 4 Elements
2 n Elements
$132-W e$ do sorting to?
Keep elements in random position
Keep the algorithm run in linear order
Keep Elements in Ascending or Descending Order rep Keep the algorithm run in $(\log n)$ order

133-Sorting is one of the few problems where provable $\qquad$ bounds exit on how fast we can sort? Upper
Average
$\log n$
Lower rep
134-In the analysis of Selction Algorithm, we eliminate the constant fraction of the array with each phase, we get convergent series in the analysis.
Geometric rep
Linear
Arithmetic
None of above

135-For the Sieve technique we take time?
T (n/3)
$T(n k)$
$N^{\wedge} 2$
$n / 3$

136-For the sieve technique we solve the problem
Recursively
Randomly
Mathematically
Precisely
137-The recurrence relation of Tower of Hanoi is $T(n)=1$ if $\mathbf{n}=1$ and $2 T(n-1)$
if $\mathbf{n}>1$. In order to move a tower of 5 rings from one peg to another how many ring moves are required?
16
10
32 (Not Confirm)
31

138-An optimization problem is one in which you want to find,

- Not a solution
- An algorithm
- Good solution
- The best solution rep


## 139-Search technique is used to find the

- Maximum two solutions
- Minimum two solutions
- Sorting solution


## 140-What type of instructions Random access machine can execute?

Geometric and arithmetic
Algebraic and logic
Arithmetic and logic rep
Parallel and recursive
141-Due to left complete nature of binary tree, the heap can be stored in

- Arrays rep
- Structures
- Link Lis
- Stack


## 142-What type of instructions Random Access Machine (RAM) can execute?

Algebraic and logic
Geometric and arithmetic
Arithmetic and logic rep
Parallel and recursive

143-For Chain Matrix Multiplication we can not use divide and conquer approach because,

We do not know the optimum k
We use divide and conquer for sorting only rep
We can easily perform it in linear time
Size of data is not given
144-We do sorting to,
Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order rep
145-Heaps can be stored in arrays without using any pointers; this is due to the $\qquad$ nature of the binary tree,
left-complete Page 40
right-complete
tree nodes
tree leaves

146-Sieve Technique can be applied to selection problem?
True Page 35
False
147-A heap is a left-complete binary tree that conforms to the $\qquad$
increasing order only
decreasing order only
heap order Page 40
$(\log n)$ order
148-A (an) $\qquad$ is a left-complete binary tree that conforms to the heap order

Heap $\quad$ Page 40
binary tree
binary search tree
array

149-Divide-and-conquer as breaking the problem into a small number of pivot
Sieve

## smaller sub problems Page 34

Selection
150-In Sieve Technique we do not know which item is of interest
True Page 34
False
151-The recurrence relation of Tower of Hanoi is given below $T(n)=\{1$ if $\mathbf{n}=1$ and $2 T(n-1)$ if $\mathbf{n}>1$ In order to move a tower of 5 rings from one peg to another, how many ring moves are required?
16
10
32
31

152-In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent $\qquad$ series in the analysis,
linear
arithmetic
geometric
Page 37
exponent
153-For the heap sort, access to nodes involves simple $\qquad$ operations.:

## Arithmetic Page 41

binary
algebraic
logarithmic
154-For the sieve technique we solve the problem,
Recursively
Page 34
mathematically
precisely
accurately
155-The sieve technique works in $\qquad$ as follows
Phases Page 34
numbers
integers
routines
156-Slow sorting algorithms run in,
$\theta\left(n^{2}\right)$ Page 39
$T\left(n^{\wedge}\right)$
T(n)
$T(\log n)$

157-A (an) $\qquad$ is a left-complete binary tree that conforms to the heap order
Heap
binary tree binary
search tree array

158-In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent $\qquad$ series in the analysis,
linear
arithmetic
geometric
exponent
159-In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as, T(n)
$\mathrm{T}(\mathrm{n} / 2)$
$\underline{\log n} \quad$ Page 37
$\mathrm{n} / 2+\mathrm{n} / 4$
160- The sieve technique is a special case, where the number of sub problems is just
5
many
$\underline{1} \quad$ Page 34
few
161-In which order we can sort?
increasing order only
decreasing order only
increasing order or decreasing order Page 39
both at the same time

162-The recurrence relation of Tower of Hanoi is given below $T(n)=\{1$ if $n=1$ and $2 T(n-1)$ if $n>1$ In order to move a tower of 5 rings from one peg to another, how many ring moves are required?
16
10
32
31
163-Analysis of Selection algorithm ends up with,
(n) pg\#37
$\mathrm{T}(1 / 1+\mathrm{n})$
$\mathrm{T}(\mathrm{n} / 2)$
$\mathbf{T}(\mathbf{n} / 2)+\mathbf{n})$
164-We do sorting to,
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order
rep
165-Divide-and-conquer as breaking the problem into a small number of pivot
Sieve
smaller sub problems

## Selection

166-The analysis of Selection algorithm shows the total running time is indeed $\qquad$ in n , Arithmetic geometric
linear $\quad$ Page 37
orthogonal
167-How many elements do we eliminate in each time for the Analysis of Selection algorithm?
n / 2 elements
rep
( $\mathrm{n} / 2$ ) +n elements
n/ 4 elements
2 n elements
168-Sieve Technique can be applied to selection problem?
True
False
169-For the heap sort we store the tree nodes in
level-order traversal Page 40
in-order traversal
pre-order traversal
post-order traversal
170-One of the clever aspects of heaps is that they can be stored in arrays without using any $\qquad$ -
pointers rep
constants
variables
functions

171-For the heap sort we store the tree nodes in
level-order traversal rep
in-order traversal
pre-order traversal
post-order traversal
172-. The sieve technique works in $\qquad$ as follows
Phases Page 34
numbers
integers
routines

173- In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent $\qquad$ series in the analysis,
linear
arithmetic
geometric
rep
exponent

174-. We do sorting to,
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order
175-. In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as, T(n)
$\mathrm{T}(\mathrm{n} / 2)$
$\underline{\log n}$ rep
$\mathrm{n} / 2+\mathrm{n} / 4$
176-. In which order we can sort?
increasing order only
decreasing order only
increasing order or decreasing order rep both at the same
time
177-. In Sieve Technique we do not know which item is of interest
True
False
178-. For the sieve technique we solve the problem, recursively
mathematically
precisely
179-. Divide-and-conquer as breaking the problem into a small number of pivot
Sieve
smaller sub problems
Selection
180-Divide-and-Conquer is as breaking the problem into a small number of - Smaller Sub Problems

- Pivot
- Sieve
- Solutions

181-Analysis of Selection Sort ends up with
T(n) Page 37

- $\mathrm{T}(1 / 1+\mathrm{n})$
-T(n/2)
- $\mathrm{T}(\mathrm{n} / 2)+\mathrm{n})$

182-How many elements do we eliminate each time for the Analysis of Selection Algorithm?

- (n / 2) +n Elements
- n / 2 Elements
-n / 4 Elements
- 2 n Elements

183-A heap is a left-complete binary tree that conforms to the?

- Increasing Order
- Decreasing order
- Heap Order
- $(\ln \log \mathrm{n})$ order

184-The Sieve Sequence is a special case where the number of smaller sub problems is just_ . 4 - Many

- 1
- Few

185-Heaps can be stored in arrays without using any pointers this is due to the of the binary tree?

- Tree Nodes
- Right-Complete Nature
- Left-Complete Nature
- Tree Leaves

186-For the Heap Sort access to nodes involves simple _ operations:

- Geometric
- Linear
- Arithmetic
- Algebraic

187-The Analysis of Selection Sort shows that the total running time is indeed in $\mathbf{n}$ ?

- Geometric
- Linear
- Arithmetic
- Algebraic

188-For the sieve technique we solve the problem

- Recursively
- Randomly
- Mathematically
- Precisely

189-How much time merger sort takes for an array of numbers?

- $\mathrm{T}\left(\mathrm{n}^{\wedge} 2\right)$
- T(n) Page 30
- T(log n)
- $\mathrm{T}(\mathrm{n} \log \mathrm{n})$

190-Divide-and-Conquer is as breaking the problem into a small number of • Smaller Sub Problems rep

- Pivot
- Sieve
- Solutions

191-Analysis of Selection Sort ends up with

- (n) rep
- T(1/1+n)
- $\mathrm{T}(\mathrm{n} / 2)$
- $\mathrm{T}((\mathrm{n} / 2)+\mathrm{n})$

192-How many elements do we eliminate each time for the Analysis of Selection Algorithm?

- (n / 2)+n Elements
-n/2 Elements
-n / 4 Elements
- 2 n Elements

193-A heap is a left-complete binary tree that conforms to the?

- Increasing Order
- Decreasing order
- Heap Order
- (nlog n) order

194-The Sieve Sequence is a special case where the number of small er sub problems is just_. . 4

- Many
- 1
- Few

195-Heaps can be stored in array $s$ without using any pointers this is due to the of the binary tree?

- Tree Nodes
- Right-Complete Nature
- Left-Complete Nature
- Tree Leaves

196-For the Heap Sort access to nodes involves simple _ operations:

- Geometric
- Linear
- Arithmetic rep
- Algebraic

The Analysis of Selection Sort shows that the total running time is indeed in n ?

- Geometric
- Linear pg\#37
- Arithmetic
- Algebraic

For the sieve technique we solve the problem

| Pecursively | rep |
| :--- | :--- |
| - Randomly |  |
| - Mathematically |  |
| - Precisely |  |

How much time merger sort takes for an array of numbers?
$\cdot \mathrm{T}\left(\mathrm{n}^{\wedge} 2\right)$

- T(n)
- T(log $n$ )
-T( $\mathrm{n} \log \mathrm{n})$

1. Question \# 1 of 10 ( Start time: 06:18:58 PM ) Total Marks: 1

We do sorting to,
Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order Page 39
2. Question \# 2 of 10 ( Start time: 06:19:38 PM ) Total Marks: 1

Heaps can be stored in arrays without using any pointers; this is due to the $\qquad$ nature of the binary tree,
Select correct option:
left-complete Page 40
right-complete
tree nodes
tree leaves
3. Question \# 3 of 10 ( Start time: 06:20:18 PM ) Total Marks: 1

Sieve Technique can be applied to selection problem?
Select correct option:
True Page 35
False
4. Question \# 4 of 10 ( Start time: 06:21:10 PM ) Total Marks: 1

A heap is a left-complete binary tree that conforms to the $\qquad$
Select correct option:
increasing order only
decreasing order only
heap order Page 40
$(\log n)$ order
5. Question \# 5 of 10 ( Start time: 06:21:39 PM ) Total Marks: 1

A (an) ___ is a left-complete binary tree that conforms to the heap order Select correct option:

## Heap Page 40

binary tree
binary search tree
array
6. Question \# 6 of 10 ( Start time: 06:22:04 PM ) Total Marks: 1

Divide-and-conquer as breaking the problem into a small number of Select correct option:
pivot
Sieve

## smaller sub problems Page 34

Selection
7. Question \# 7 of 10 ( Start time: 06:22:40 PM ) Total Marks: 1

In Sieve Technique we do not know which item is of interest
Select correct option:
True Page 34
False
8. Question \# 8 of 10 ( Start time: 06:23:26 PM ) Total Marks: 1

The recurrence relation of Tower of Hanoi is given below $T(n)=\{1$ if $n=1$ and $2 T(n-1)$ if $n>1$ In order to move a tower of 5 rings from one peg to another, how many ring moves are required?
Select correct option:
16
10
32
31
9. Question \# 9 of 10 ( Start time: 06:24:44 PM ) Total Marks: 1

In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent $\qquad$ series in the analysis,
Select correct option:
linear
arithmetic
geometric Page 37
exponent
10. Question \# 10 of 10 ( Start time: 06:25:43 PM ) Total Marks: 1

For the heap sort, access to nodes involves simple $\qquad$ operations.
Select correct option:

## Arithmetic Page 41

binary
algebraic
logarithmic
11. Question \# 1 of 10 ( Start time: 10:02:41 PM ) Total Marks: 1

For the sieve technique we solve the problem,
Select correct option:

## Recursively

## Page 34

mathematically
precisely
accurately
12. The sieve technique works in $\qquad$ as follows
Select correct option:
Phases Page 34
numbers
integers
routines
13. Slow sorting algorithms run in,

Select correct option:
$\boldsymbol{O}\left(\mathbf{n}^{2}\right) \quad$ Page 39
$\mathrm{T}\left(\mathrm{n}^{\wedge} 2\right)$
T(n)
$T(\log n)$
14. $\mathrm{A}(\mathrm{an})$ $\qquad$ is a left-complete binary tree that conforms to the heap order
Select correct option:

## heap

binary tree
binary search tree
array
15. In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase;
we get the convergent $\qquad$ series in the analysis,
Select correct option:
linear
arithmetic
geometric
exponent
16. In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as, Select correct option:
T(n)
T(n/2)
$\underline{\log n} \quad$ Page 37
$\mathrm{n} / 2+\mathrm{n} / 4$
17. The sieve technique is a special case, where the number of sub problems is just Select correct option:
5
many
$\underline{1} \quad$ Page 34
few
18. In which order we can sort?

Select correct option:
increasing order only
decreasing order only
increasing order or decreasing order Page 39
both at the same time
19. The recurrence relation of Tower of Hanoi is given below $T(n)=\{1$ if $n=1$ and $2 T(n-1)$ if $n>1$ In order to move a tower of 5 rings from one peg to another, how many ring moves are required?
Select correct option:
16
10
32
31
20. Analysis of Selection algorithm ends up with,

Select correct option:
T(n)
$\mathrm{T}(1 / 1+\mathrm{n})$
$\mathrm{T}(\mathrm{n} / 2)$
$\mathbf{T}(\mathbf{n} / 2)+\mathbf{n})$
21. We do sorting to,

Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order
22. Divide-and-conquer as breaking the problem into a small number of Select correct option:
pivot
Sieve

## smaller sub problems

Selection
23. The analysis of Selection algorithm shows the total running time is indeed $\qquad$ in n , Select correct option:
arithmetic
geometric
linear
orthogonal
24. How many elements do we eliminate in each time for the Analysis of Selection algorithm?

Select correct option:
n/2 elements
( $\mathrm{n} / 2$ ) +n elements
$\mathrm{n} / 4$ elements
2 n elements
25. Sieve Technique can be applied to selection problem?

Select correct option:

## True

False
26. For the heap sort we store the tree nodes in Select correct option:

## level-order traversa <br> Page 40

in-order traversal
pre-order traversal
post-order traversal
27. One of the clever aspects of heaps is that they can be stored in arrays without using any $\qquad$ .

## pointers

constants
variables
functions

## 28. For the heap sort we store the tree nodes in

## level-order traversal

in-order traversal
pre-order traversal
post-order traversal
29. The sieve technique works in $\qquad$ as follows

Phases Page 34
numbers
integers
routines
30. In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent $\qquad$ series in the analysis,
linear
arithmetic
geometric
exponent
31. We do sorting to,
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order
32. In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,

T(n)
T(n/2)
$\underline{\log n}$
$\mathrm{n} / 2+\mathrm{n} / 4$
33. In which order we can sort?
increasing order only
decreasing order only
increasing order or decreasing order
both at the same time
34. In Sieve Technique we do not know which item is of interest

True
False

## 35. For the sieve technique we solve the problem,

## recursively

mathematically
precisely

## 36. Divide-and-conquer as breaking the problem into a small number of

pivot
Sieve
smaller sub problems
Selection
36. Question \# 1 of 10 Total Marks: 1

Divide-and-Conquer is as breaking the problem into a small number of

- Smaller Sub Problems
- Pivot
- Sieve
- Solutions

37. Question \# 2 of 10 Total Marks: 1

Analysis of Selection Sort ends up with

- T(n) Page 37
- $\mathrm{T}(1 / 1+n)$
- T(n/2)
- $\mathrm{T}((\mathrm{n} / 2)+\mathrm{n})$

38. Question \# 3 of 10 Total Marks: 1

How many elements do we eliminate each time for the Analysis of Selection Algorithm?

- (n / 2) +n Elements
-n/2 Elements
.n / 4 Elements
- 2 n Elements

39. Question \# 4 of 10 Total Marks: 1

A heap is a left-complete binary tree that conforms to the ?

- Increasing Order
- Decreasing order
- Heap Order
- (nlog n) order

40. Question \# 5 of 10 Total Marks: 1

The Sieve Sequence is a special case where the number of smaller sub problems is just_ .
$\cdot 4$
$\cdot$ Many
$\cdot \frac{\mathbf{1}}{\cdot}$ Few
41. Question \# 6 of 10 Total Marks: 1

Heaps can be stored in arrays without using any pointers this is due to the of the binary tree?

- Tree Nodes
- Right-Complete Nature
- Left-Complete Nature
- Tree Leaves

42. Question \# 7 of 10 Total Marks: 1

For the Heap Sort access to nodes involves simple _ operations:

- Geometric
- Linear
- Arithmetic
- Algebraic

43. Question \# 8 of 10 Total Marks: 1

The Analysis of Selection Sort shows that the total running time is indeed in n ?

- Geometric
- Linear
- Arithmetic
- Algebraic

44. Question \# 9 of 10 Total Marks: 1

For the sieve technique we solve the problem

- Recursively
- Randomly
- Mathematically
- Precisely

45. Question \# 10 of 10 Total Marks: 1

How much time merger sort takes for an array of numbers?

- $\mathrm{T}\left(\mathrm{n}^{\wedge} 2\right)$
- T(n) Page 30
- T(log $n)$
-T( $n \log n)$

46. is a graphical representation of an algorithm
47. Segma Notation
48. Thita Notation
49. Flowchart
50. Asymptotic notation

Correct Choice : 3 From Lectuer \# 2
47. What will be the total number of max comparisons if we run brute-force maxima algorithm with n elements?

1. $\mathrm{n}^{\wedge} 2$
2. $n^{\wedge} n / 2$
3. n
4. $n^{\wedge} 8$

Correct Choice : 1 From Lectuer \# 3
48. function is given like $4 n^{\wedge} 4+5 n^{\wedge} 3+n$ what is the run time of this

1. theata $\left(\mathrm{n}^{\wedge} 4\right)$
2. theata( $\mathrm{n}^{\wedge} 3$ )
3. theata $\left(4 n^{\wedge} 4+5 n^{\wedge} 3\right)$
4. theata $\left(4 n^{\wedge} 4+5 n^{\wedge} 3\right)$

## Correct Choice : $\mathbf{1}$ From Lectuer \# 4

49. Consider the following
code: $\operatorname{For}(\mathrm{j}=1$; j
50. Execution of the following code fragment
int $\mathrm{i}=\mathrm{N}$; while $(\mathrm{i}>0)$
2
\{ int Sum $=0$; int j ;
for ( $\mathrm{j}=0$; j Sum++;
cout
51. Let us say we have an algorithm that carries out N 2 operations for an input of size N . Let us say that a computer takes 1 microsecond ( $1 / 1000000$ second) to carry out one operation.
How long does the algorithm run for an input of size 3000 ?
1.90 seconds
52. 9 seconds
53. 0.9 seconds
54. 0.09 seconds

## Correct Choice : $\mathbf{2}$ From Lectuer \# 4

52. The appropriate big thita classification of the given function. $f(n)=4 n 2+97 n+1000$ is 1. ?(n)
53. $\mathrm{O}\left(2^{\wedge} \mathrm{n}\right)$
54. $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
55. $O\left(n^{\wedge} 2 \log n\right)$

Correct Choice : 3 From Lectuer \# 4
53. The appropriate big ? classification of the given function. $f(n)=4 n 2+97 n+1000$ is 1. ?(n)
2. $\mathrm{O}\left(2^{\wedge} \mathrm{n}\right)$
3. $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
4. $O\left(n^{\wedge} 2 \log n\right)$

Correct Choice : $\mathbf{3}$ From Lectuer \# 4
54. Which sorting algorithm is faster

1. O ( $\mathrm{n} \log \mathrm{n}$ )
2. $\mathrm{On}^{\wedge} 2$
3. O ( $\mathrm{n}+\mathrm{k}$ )
4. $O n^{\wedge} 3$

Correct Choice : $\mathbf{3}$ From Lectuer \# 5
55 - If algorithm $A$ has running time $7 n^{\wedge} 2+2 n+3$ and algorithm $B$ has running time $2 n^{\wedge} 2$, then

1. Both have same asymptotic time complexity
2. A is asymptotically greater
3. B is asymptotically greater
4. None of others

Correct Choice : $\mathbf{1}$ From Lectuer \# 6
56 - If algorithm $A$ has running time $7 n^{\wedge} 2+2 n+3$ and algorithm $B$ has running time $2 n^{\wedge} 2$, then

1. Both have same asymptotic time complexity
2. A is asymptotically greater
3. B is asymptotically greater
4. None of others

Correct Choice : $\mathbf{1}$ From Lectuer \# 6
57 - What is the solution to the recurrence $T(n)=T(n / 2)+n$.

1. $\mathrm{O}(\log n)$
2. $\mathrm{O}(\mathrm{n})$
3. $\mathrm{O}(\mathrm{n} \log n)$
4. $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$

Correct Choice : $\mathbf{1}$ From Lectuer \# 8
58 - How much time merge sort takes for an array of numbers?

1. $\left(\mathrm{n}^{\wedge} 2\right)$
2. $\mathrm{T}(\mathrm{n})$
3. $T(\log n)$
4. $T(n \log n)$

Correct Choice : $\mathbf{2}$ From Lectuer \# 8

59 - Consider the following Algorithm:
Factorial ( n ) $\{$ if ( $\mathrm{n}=1$ )
return 1 else return ( n *
Factorial(n-1))
\} Recurrence for the following algorithm is:

1. $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+1$
2. $\mathrm{T}(\mathrm{n})=\mathrm{nT}(\mathrm{n}-1)+1$
3. $T(n)=T(n-1)+n$
4. $T(n)=T(n(n-1))+1$

Correct Choice : 4 From Lectuer \# 9
60 - For the Sieve Technique we take time

1. T(nk) .
2. $\mathrm{T}(\mathrm{n} / 3) 4$
3. $\mathrm{n}^{\wedge} 2$
4. $n / 3$

Correct Choice : 1 From Lectuer \# 10
61 - Sieve Technique applies to problems where we are interested in finding a single item from a larger set of $\qquad$

1. n items
2. phases
3. pointers
4. constant

## Correct Choice : 1 From Lectuer \# 10

62 - In Sieve Technique we do not know which item is of interest

1. FALSE
2. TRUE

## Correct Choice : $\mathbf{2}$ From Lectuer \# 10

63 - For the sieve technique we solve the problem,

1. recursively
2. mathematically
3. accurately
4. precisely

Correct Choice : 1 From Lectuer \# 10
64 - For the Sieve Technique we take time

1. $\mathrm{T}(\mathrm{nk})$
2. $\mathrm{T}(\mathrm{n} / 3)$
3. $\mathrm{n}^{\wedge} 2$
4. $n / 3$

Correct Choice : 1 From Lectuer \# 10

65 - How many elements do we eliminate in each time for the Analysis of Selection algorithm?

1. n/2 elements
2. $(\mathrm{n} / 2)+\mathrm{n}$ elements
3. n/4 elements
4. n elements

## Correct Choice : $\mathbf{4}$ From Lectuer \# 10

66 - Sieve Technique applies to problems where we are interested in finding a single item from a larger set of $\qquad$

1. n items
2. phases
3. pointers
4. constant

Correct Choice : 1 From Lectuer \# 10
67 - Sieve Technique can be applied to selection problem?

1. TRUE
2. FALSE

Correct Choice : 1 From Lectuer \# 10
68 - The analysis of Selection algorithm shows the total running time is indeed $\qquad$ in $n$,

1. arithmetic
2. geometric
3. linear
4. orthogonal

Correct Choice : $\mathbf{3}$ From Lectuer \# 10
69 - The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,

1. divide-and-conquer
2. decrease and conquer
3. greedy nature
4. 2-dimension Maxima

Correct Choice : 1 From Lectuer \# 10
70 - The sieve technique works in $\qquad$ as follows

1. phases
2. numbers
3. integers
4. routines

Correct Choice : 1 From Lectuer \# 10

71 - The sieve technique works in $\qquad$ as follows

1. phases
2. numbers
3. integers
4. routines

## Correct Choice : 1 From Lectuer \# 10

72-A (an) $\qquad$ is a left-complete binary tree that conforms to the heap order

1. heap
2. binary tree
3. binary search tree
4. array

Correct Choice : $\mathbf{1}$ From Lectuer \# 11
73 - For the heap sort, access to nodes involves simple $\qquad$ operations.

1. arithmetic
2. binary
3. algebraic
4. logarithmic

Correct Choice : 1 From Lectuer \# 11
74 - We do sorting to,

1. keep elements in random positions
2. keep the algorithm run in linear order
3. keep the algorithm run in $(\log n)$ order
4. keep elements in increasing or decreasing order

Correct Choice : 1 From Lectuer \# 11
75 - For the heap sort we store the tree nodes in

1. level-order traversal
2. in-order traversal
3. pre-order traversal
4. post-order traversal

Correct Choice : 1 From Lectuer \# 11
76 - In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,

1. $\mathrm{T}(\mathrm{n})$
2. $T(n / 2)$
3. $\log n$
4. $n / 2+n / 4$

Correct Choice : 3 From Lectuer \# 11

77 - In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,

1. T(n)
2. $\mathrm{T}(\mathrm{n} / 2)$
3. $\log n$
4. $\mathrm{n} / 2+\mathrm{n} / 4$

Correct Choice : $\mathbf{3}$ From Lectuer \# 11
78 - In which order we can sort?

1. increasing order only
2. decreasing order only
3. increasing order or decreasing order
4. both at the same time

Correct Choice : $\mathbf{3}$ From Lectuer \# 11
79 - One of the clever aspects of heaps is that they can be stored in arrays without using any

1. pointers
2. constants
3. variables
4. functions

Correct Choice : 1 From Lectuer \# 11
$\mathbf{8 0}$ - One of the clever aspects of heaps is that they can be stored in arrays without using any

1. pointers
2. constants
3. variables
4. functions

## Correct Choice : $\mathbf{1}$ From Lectuer \# 11

81-Slow sorting algorithms run in,

1. $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right) 8$
2. $\mathrm{O}(\mathrm{n})$
3. $O(\log n)$
4. $O(n \log n)$

Correct Choice : 1 From Lectuer \# 11
$\mathbf{8 2}$ - What is the total time to heapify?

1. ? $(\log n)$
2.?( $n \log n)$
3.? $\left(n^{\wedge} 2 \log n\right)$
2. ? $\left(\log ^{\wedge} 2 n\right)$

Correct Choice : 1 From Lectuer \# 12

83- When we call heapify then at each level the comparison performed takes time It will take O (1)

1. Time will vary according to the nature of input data
2. It can not be predicted
3. It will take $O(\log n)$
4. None of the Given

Correct Choice : 3 From Lectuer \# 12
84 - After partitioning array in Quick sort, pivot is placed in a position such that

1. Values smaller than pivot are on left and larger than pivot are on right
2. Values larger than pivot are on left and smaller than pivot are on right
3. Pivot is the first element of array
4. Pivot is the last element of array

Correct Choice : $\mathbf{2}$ From Lectuer \# 13
$\mathbf{8 5}$ - The running time of quick sort depends heavily on the selection of 1. No of inputs
2. Arrangement of elements in array
3. Size o elements
4. Pivot element

## Correct Choice : $\mathbf{4}$ From Lectuer \# 13

86 - In Quick Sort Constants hidden in $T(n \log n)$ are

1. Large
2. Medium
3. Small
4. Not Known

Correct Choice : 3 From Lectuer \# 14
87 - In Quick Sort Constants hidden in $T(n \log n)$ are

1. Large
2. Medium
3. Small
4. Not Known

Correct Choice : $\mathbf{3}$ From Lectuer \# 14
$\mathbf{8 8}$ - Is it possible to sort without making comparisons?

1. Yes
2. No

Correct Choice : 1 From Lectuer \# 15
89 - Merge sort is stable sort, but not an in-place algorithm

1. TRUE
2. FALSE

Correct Choice : 1 From Lectuer \# 15

90 - In counting sort, once we know the ranks, we simply $\qquad$ numbers to their final positions in an output array.

1. Delete
2. copy
3. Mark
4. arrange

Correct Choice : $\mathbf{2}$ From Lectuer \# 15
91 - An in place sorting algorithm is one that uses $\qquad$ arrays for storage

1. Two dimensional arrays
2. More than one array
3. No Additional Array
4. None of the above

Correct Choice : 3 From Lectuer \# 15

92 - Continuation/counting sort is suitable to sort the elements in range 1 to k

1. K is Large
2. K is not known
3. K may be small or large
4. K is small

Correct Choice : $\mathbf{4}$ From Lectuer \# 15
93 - In stable sorting algorithm.

1. If duplicate elements remain in the same relative position after sorting
2. One array is used
3. More than one arrays are required
4. Duplicating elements not handled

Correct Choice : 1 From Lectuer \# 15
94 - One example of in place but not stable algorithm is

1. Merger Sort
2. Quick Sort
3. Continuation Sort
4. Bubble Sort

Correct Choice : 2 From Lectuer \# 15
95 - One example of in place but not stable algorithm is

1. Merger Sort
2. Quick Sort
3. Continuation Sort
4. Bubble Sort

Correct Choice : 2 From Lectuer \# 15

96 - One of the clever aspects of heaps is that they can be stored in arrays without using any $\qquad$ -.

1. pointers
2. constants
3. variables
4. functions

## Correct Choice : 1

97 - Quick sort is

1. Stable \& in place
2. Not stable but in place
3. Stable but not in place
4. Some time stable \& some times in place

Correct Choice : 3 From Lectuer \# 15
98 - Quick sort is

1. Stable \& in place
2. Not stable but in place
3. Stable but not in place
4. Some time stable \& some times in place

## Correct Choice : 2 From Lectuer \# 15

99 - Which may be a stable sort?

1. Merger
2. Insertion
3. Both above
4. None of the above

Correct Choice : 3 From Lectuer \# 15
100 - Which of the following sorting algorithms is stable?
(i) Merge sort,
(ii) Quick sort,
(iii) Heap sort,
(iv) Counting Sort.

1. Only i
2. Only ii
3. Both i and ii
4. Both iii and iv

Correct Choice : 1 From Lectuer \# 15
101 - Mergesort is a stable algorithm but not an in-place algorithm.

1. TRUE
2. FALSE

Correct Choice : 1 From Lectuer \# 16

102 - Memorization is?

1. To store previous results for future use
2. To avoid this unnecessary repetitions by writing down the results of recursive calls and looking them up again if we need them later
3. To make the process accurate
4. None of the above

Correct Choice : $\mathbf{2}$ From Lectuer \# 16
103 - Dynamic programming algorithms need to store the results of intermediate
sub-problems.

1. TRUE
2. FALSE

Correct Choice : $\mathbf{1}$ From Lectuer \# 17
104 - Dynamic programming uses a top-down approach.

1. TRUE
2. FALSE

Correct Choice : $\mathbf{2}$ From Lectuer \# 17
105 - The edit distance between FOOD and MONEY is

1. At most four
2. At least four
3. Exact four
4. Wrong

Correct Choice : 1 From Lectuer \# 17
106 - The edit distance between FOOD and MONEY is

1. At most four
2. At least four
3. Exact four
4. Wrong

Correct Choice : $\mathbf{1}$ From Lectuer \# 17
107 - If there are $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$ entries in edit distance matrix then the total running time is

1. O (1)
2. $O\left(n^{\wedge} 2\right)$
3. O (n)
4. O ( $n \log n$ )

Correct Choice : $\mathbf{2}$ From Lectuer \# 18

108-A p x q matrix A can be multiplied with a q x r matrix B. The result will be a p x r matrix C. There are ( $\mathrm{p} . \mathrm{r}$ ) total entries in C and each takes $\qquad$ to compute.

1. O (q)
2. O (1)
3. $O\left(n^{\wedge} 2\right)$
4. O ( $\mathrm{n}^{\wedge} 3$ )

## Correct Choice : 1 From Lectuer \# 19

109 - For Chain Matrix Multiplication we can not use divide and conquer approach because,

1. We do not know the optimum k
2. We use divide and conquer for sorting only
3. We can easily perform it in linear time
4. Size of data is not given

Correct Choice : 1 From Lectuer \# 19
110 - A p x q matrix A can be multiplied with a $q \times r$ matrix B. The result will be a p x r matrix
C. There are ( $\mathrm{p} . \mathrm{r}$ ) total entries in C and each takes $\qquad$ to compute.

1. O (q)
2. O (1)
3. O ( $\left.\mathrm{n}^{\wedge} 2\right)$
4. O ( $\mathrm{n}^{\wedge} 3$ )

Correct Choice : 1 From Lectuer \# 19
111 - The Knapsack problem belongs to the domain of $\qquad$ problems.

1. Optimization
2. NP Complete
3. Linear Solution
4. Sorting

Correct Choice : 1 From Lectuer \# 21
112 - Suppose we have three items as shown in the following table, and suppose the capacity of the knapsack is 50 i.e. $W=50$. Item Value Weight 16010210020312030 The optimal solution is to pick 1. Items 1 and 2
2. Items 1 and 3
3. Items 2 and 3
4. None of these

Correct Choice : 4 From Lectuer \# 22
Correct Choice : 3 From Lectuer \# 21
113 - Huffman algorithm uses a greedy approach to generate a postfix code T that minimizes the expected length $\mathrm{B}(\mathrm{T})$ of the encoded string.

1. TRUE
2. FALSE

## Correct Choice : 1 From Lectuer \# 22

114 - The codeword assigned to characters by the Huffman algorithm have the property that no codeword is the postfix of any other.

1. TRUE
2. FALSE

Correct Choice : $\mathbf{2}$ From Lectuer \# 22
115 - The greedy part of the Huffman encoding algorithm is to first find two nodes with larger frequency.

1. TRUE
2. FALSE

## Correct Choice : $\mathbf{2}$ From Lectuer \# 22

116 - An optimization problem is one in which you want to find,

1. Not a solution
2. An algorithm
3. Good solution
4. The best solution
5. Question \# 1 of 10 Total Marks: 1

Divide-and-Conquer is as breaking the problem into a small number of

- Smaller Sub Problems
- Pivot
- Sieve
- Solutions

118. Question \# 2 of 10 Total Marks: 1

Analysis of Selection Sort ends up with

- T(n)
- T(1/1+n)
- T(n/2)
- $\mathrm{T}((\mathrm{n} / 2)+\mathrm{n})$

119. Question \# 3 of 10 Total Marks: 1

How many elements do we eliminate each time for the Analysis of Selection Algorithm?

- (n / 2) +n Elements
- n/2 Elements
- n / 4 Elements
- 2 n Elements

120. Question \# 4 of 10 Total Marks: 1

A heap is a left-complete binary tree that conforms to the ?

- Increasing Order
- Decreasing order
- Heap Order
- (nlog n) order

121. Question \# 5 of 10 Total Marks: 1

The Sieve Sequence is a special case where the number of smaller sub problems is just_ .

- 4
- Many
- 1
- Few

122. Question \# 6 of 10 Total Marks: 1

Heaps can be stored in arrays without using any pointers this is due to the $\qquad$ of the binary tree?

- Tree Nodes
- Right-Complete Nature
- Left-Complete Nature
- Tree Leaves

123. Question \# 7 of 10 Total Marks: 1

For the Heap Sort access to nodes involves simple _ operations:

- Geometric
- Linear
- Arithmetic
- Algebraic

124. Question \# 8 of 10 Total Marks: 1

The Analysis of Selection Sort shows that the total running time is indeed in n ?

- Geometric
- Linear
- Arithmetic
- Algebraic

125. Question \# 9 of 10 Total Marks: 1

For the sieve technique we solve the problem

- Recursively
- Randomly
- Mathematically
- Precisely

126. Question \# 10 of 10 Total Marks: 1

How much time merger sort takes for an array of numbers?

- $\mathrm{T}\left(\mathrm{n}^{\wedge} 2\right)$
- $\mathbf{T}(\mathbf{n})$
- T(log n)
-T(n $\log n)$

127. What type of instructions Random access machine can execute?

Choose best answer.
Geometric and arithmetic
Algebraic and logic
Arithmetic and logic Page 10
Parallel and recursive
128. Due to left complete nature of binary tree, the heap can be stored in

- Arrays

Page 40

- Structures
- Link Lis
- Stack

129. What type of instructions Random Access Machine (RAM) can execute?

Choose best answer
Algebraic and logic
Geometric and arithmetic
$\begin{array}{ll}\text { Arithmetic and logic } & \text { Page } 10 \\ \text { Parallel and recursive } & \end{array}$
130. For Chain Matrix Multiplication we can not use divide and conquer approach because,

We do not know the optimum $k \quad$ Page 86
We use divide and conquer for sorting only "
We can easily perform it in linear time
Size of data is not given
131. knapsack problem is called a " $0-1$ " problem, because
?????????????????????
Each item must be entirely accepted or rejected Page 92
?????????????????????
???????????????????????
132. word Algorithm comes from the name of the muslim author Abu Ja'far Mohammad ibn Musa alKhowarizmi. Page 7
133. al-Khwarizmi's work was written in a book titled al Kitab al-mukhatasar fi hisab al-jabr wa'lmuqabalah $\quad$ Page 7
134. What is the total time to heapify?

- O(log $n$ ) Page 43
- $O(n \log n)$
- O(n2 logn)
- $\mathrm{O}(\log 2 \mathrm{n})$
machine or RAM is a/an
- Machine build by Al-Khwarizmi
- Mechanical machine
- Electronics machine
- Mathematical model Page 10

136. Question No: 2 (Marks: 1 ) - Please choose one
___ is a graphical representation of an algorithm

- $\Sigma_{\text {notation }}$
- $\Theta_{\text {notation }}$
- Flowchart
- Asymptotic notation

137. Question No: 3 (Marks: 1 ) - Please choose one
idealized machine with $\qquad$ random-access memory.

- 256 MB
- 512 MB
- an infinitely large Page 10
- 100GB

138. Question No: 4 (Marks: 1 ) - Please choose one

What type of
instructions Random Access Machine (RAM) can execute? Choose best answer

- Algebraic and logic
- Geometric and arithmetic
- Arithmetic and logic Page 10
- Parallel and recursive


## 139. Question No: 5 (Marks: 1 ) - Please choose one

the total number of max comparisons if we run brute-force maxima algorithm with n elements?
$\begin{array}{ll} & n^{2} \\ > & n^{\frac{n}{2}} \\ & n \\ & n^{8}\end{array} \quad$ Page 14
solution to the recurrence $T(n)=T(n / 2)+n$.

- $O(\log n)$
- $\boldsymbol{O}(\mathrm{n})$
- $O(n \log n)$
- $O\left(n^{2}\right)$

141. Question No: 7 (Marks: 1 ) - Please choose one

Consider the
following code:

```
For(j=1; j<n;j++)
    For(k=1; k<15;k++)
            For(l=5;1<n; l++)
            {
                                Do_something_constant();
    }
```

What is the order of execution for this code.
$-\mathrm{O}(n)$

- $\mathrm{O}\left(n^{3}\right)$
- $\mathrm{O}\left(n^{2} \log n\right)$
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$

142. Question No: 8 (Marks: 1 ) - Please choose one

Consider the
following Algorithm:
Factorial (n)\{
if ( $\mathrm{n}=1$ )
return 1
else
return ( n * Factorial(n-1))
\{
Recurrence for the following algorithm is:

- $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+1$
- $\mathrm{T}(\mathrm{n})=\mathrm{nT}(\mathrm{n}-1)+1$
- $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+\mathrm{n}$
- $\mathbf{T}(\mathbf{n})=\mathbf{T}(\mathbf{n}(\mathbf{n}-1))+\mathbf{1}$

143. Question No: 9 (Marks: 1 ) - Please choose one

What is the total
time to heapify?

- $O(\log n)$

Page 43

- $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
- $\mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$
- $\mathrm{O}\left(\log ^{2} \mathrm{n}\right)$
heapify then at each level the comparison performed takes time
- It will take $\Theta$ (1) Page 43
- Time will vary according to the nature of input data
- It can not be predicted
- It will take $\Theta(\log \mathrm{n})$


## 145. Question No: 11 (Marks: 1 ) - Please choose one

In Quick sort, we don't have the control over the sizes of recursive calls
$\rightarrow$ True Page 49

- False
- Less information to decide
- Either true or false

146. Question No: 12 ( Marks: 1 ) - Please choose one

Is it possible to sort without making comparisons?
$\begin{array}{ll}\rightarrow \text { Yes } & \text { Page } 57\end{array}$
147. Question No: 13 (Marks: 1 ) - Please choose one

If there are $\Theta\left(n^{2}\right)$ entries in edit distance matrix then the total running time is
$-\Theta(1)$
$-\Theta\left(\mathrm{n}^{2}\right) \quad$ Page 84

- $\Theta(\mathrm{n})$
- $\Theta(\mathrm{n} \log \mathrm{n})$

148. Question No: 14 (Marks: 1 ) - Please choose one

For Chain Matrix Multiplication we can not use divide and conquer approach because,

- We do not know the optimum k Page 86
- We use divide and conquer for sorting only
- We can easily perform it in linear time
- Size of data is not given

149. Question No: 15 (Marks: 1 ) - Please choose one

The Knapsack problem belongs to the domain of $\qquad$ problems.

- Optimization Page 91
- NP Complete
- Linear Solution
- Sorting
have three items as shown in the following table, and suppose the capacity of the knapsack is 50 i.e. $\mathrm{W}=50$.

| Item | Value | Weight |
| ---: | ---: | ---: |
| 1 | 60 | 10 |
| 2 | 100 | 20 |
| 3 | 120 | 30 |

The optimal solution is to pick

- Items 1 and 2
- Items 1 and 3

Items 2 and $3 \quad$ Page 91

- None of these

151. Sorting is one of the few problems where provable $\qquad$ bonds exits on how fast we can sort,
upper
lower Page 39
average
$\log n$
152. The number of nodes in a complete binary tree of height $h$ is
$\underline{\mathbf{2}^{\wedge}(\mathrm{h}+1)-1}$
Page 40
$2^{*}(\mathrm{~h}+1)-1$
2*(h+1)
$\left((h+1)^{\wedge} 2\right)-1$
153. For the Sieve Technique we take time

T(nk) Page 34
$\mathrm{T}(\mathrm{n} / 3)$
$\mathrm{n}^{\wedge} 2$
n/3
154. In Quick sort algorithm, constants hidden in $T(n \lg n)$ are
large
medium
Not known
small
155. Memoization is:

To store previous results for further use
To avoid unnecessary repetitions by writing down the results of recursive calls and looking them again if needed later. Page 74
To make the process accurate
None of the above
156. Counting sort has time complexity of?
$\mathrm{O}(\mathrm{n})$
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
$\mathrm{O}(\mathrm{nlog} n)$
$\mathrm{O}(\mathrm{k})$

## CS502 - Fundamentals of Algorithms

Quiz No. 1 12-11-2012

Question \# 1 of 10 ( Start time: 06:18:58 PM ) Total Marks: 1
We do sorting to,
Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in ( $\log \mathrm{n}$ ) order
keep elements in increasing or decreasing order

Question \# 2 of 10 ( Start time: 06:19:38 PM ) Total Marks: 1
Heaps can be stored in arrays without using any pointers; this is due to the $\qquad$ nature of the binary tree, Select correct option:

## left-complete

right-complete
tree nodes
tree leaves

Question \# 3 of 10 ( Start time: 06:20:18 PM ) Total Marks: 1
Sieve Technique can be applied to selection problem?
Select correct option:

## True

False

Question \# 4 of 10 ( Start time: 06:21:10 PM ) Total Marks: 1
A heap is a left-complete binary tree that conforms to the $\qquad$
Select correct option:
increasing order only
decreasing order only
heap order
( $\log n$ ) order

Question \# 5 of 10 ( Start time: 06:21:39 PM ) Total Marks: 1
A (an) $\qquad$ is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array

Question \# 6 of 10 ( Start time: 06:22:04 PM ) Total Marks: 1
Divide-and-conquer as breaking the problem into a small number of
Select correct option:
pivot

Sieve

## smaller sub problems

Selection

Question \# 7 of 10 ( Start time: 06:22:40 PM ) Total Marks: 1
In Sieve Technique we do not know which item is of interest
Select correct option:

## True

False

Question \# 8 of 10 ( Start time: 06:23:26 PM ) Total Marks: 1
The recurrence relation of Tower of Hanoi is given below $T(n)=\{1$ if $n=1$ and $2 T(n-1)$ if $n>1$ In order to move a tower of 5 rings from one peg to another, how many ring moves are required?
Select correct option:

16
10
32
31

Question \# 9 of 10 ( Start time: 06:24:44 PM ) Total Marks: 1
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent $\qquad$ series in the analysis,
Select correct option:
linear
arithmetic
geometric
exponent

Question \# 10 of 10 ( Start time: 06:25:43 PM ) Total Marks: 1
For the heap sort, access to nodes involves simple $\qquad$ operations.
Select correct option:
arithmetic
binary
algebraic
logarithmic

For the sieve technique we solve the problem,
Select correct option:
recursively
mathematically
precisely
accurately
The sieve technique works in $\qquad$ as follows
Select correct option:
phases
numbers
integers
routines
Slow sorting algorithms run in,
Select correct option:
$T\left(n^{\wedge} 2\right)$
$T(n)$
$T(\log n)$
A (an) $\qquad$ is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array

In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent $\qquad$ series in the analysis,
Select correct option:
linear
arithmetic
geometric
exponent

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
Select correct option:
T(n)
T(n / 2)
$\log n$
$\mathrm{n} / 2+\mathrm{n} / 4$

The sieve technique is a special case, where the number of sub problems is just
Select correct option:
5
many
1
few

In which order we can sort?
Select correct option:
increasing order only
decreasing order only
increasing order or decreasing order
both at the same time

The recurrence relation of Tower of Hanoi is given below $T(n)=\{1$ if $n=1$ and $2 T(n-1)$ if $n>1$ In order to move a tower of 5 rings from one peg to another, how many ring moves are required?
Select correct option:

Analysis of Selection algorithm ends up with, Select correct option:
T(n)
$T(1 / 1+n)$
$T(n / 2)$
$T((n / 2)+n)$

We do sorting to,
Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

Divide-and-conquer as breaking the problem into a small number of Select correct option:
pivot
Sieve
smaller sub problems
Selection

The analysis of Selection algorithm shows the total running time is indeed $\qquad$ in n, Select correct option:
arithmetic
geometric
linear
orthogonal

How many elements do we eliminate in each time for the Analysis of Selection algorithm?
Select correct option:

## n / 2 elements

( $\mathrm{n} / 2$ ) +n elements
$\mathrm{n} / 4$ elements
2 n elements

Sieve Technique can be applied to selection problem?
Select correct option:

True
false

For the heap sort we store the tree nodes in
Select correct option:
level-order traversal
in-order traversal
pre-order traversal
post-order traversal

One of the clever aspects of heaps is that they can be stored in arrays without using any $\qquad$ .
Select correct option:
pointers
constants
variables
functions

A (an) $\qquad$ is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array

Divide-and-conquer as breaking the problem into a small number of
Select correct option:
pivot
Sieve
smaller sub problems
Selection

Heaps can be stored in arrays without using any pointers; this is due to the $\qquad$ nature of the binary tree, Select correct option:
left-complete
right-complete
tree nodes

For the sieve technique we solve the problem,
Select correct option:
recursively
mathematically
precisely
accurately

A heap is a left-complete binary tree that conforms to the $\qquad$
Select correct option:
increasing order only
decreasing order only
heap order
$(\log n)$ order

We do sorting to,
Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

How many elements do we eliminate in each time for the Analysis of Selection algorithm?
Select correct option:
n / 2 elements
( $\mathrm{n} / 2$ ) +n elements
$\mathrm{n} / 4$ elements
2 n elements

How much time merge sort takes for an array of numbers?
Select correct option:
$T\left(n^{\wedge} 2\right)$
$T(n)$
$T(\log n)$
$T(n \log n)$

The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of, Select correct option:
divide-and-conquer
decrease and conquer
greedy nature
2-dimension Maxima

Question \# 1 of 10 ( Start time: 08:17:23 AM ) Total M a r k s: 1
The number of nodes in a complete binary tree of height $h$ is
Select correct option:
$\mathbf{2}^{\wedge}(\mathrm{h}+1)$ - 1
2 * $(h+1)-1$
2 * $(h+1)$
$\left((h+1)^{\wedge} 2\right)-1$
Question \# 2 of 10 ( Start time: 08:18:46 AM ) Total M a r k s: 1
A (an) $\qquad$ is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array

Question \# 3 of 10 ( Start time: 08:19:38 AM ) Total M a r k s: 1
In Sieve Technique we do not know which item is of interest
Select correct option:
True
False

Question \# 4 of 10 ( Start time: 08:20:33 AM ) Total M a r k s: 1
Heaps can be stored in arrays without using any pointers; this is due to the
$\qquad$ nature of the binary tree,
Select correct option:
left-complete
right-complete
tree nodes
tree leaves

Question \# 5 of 10 ( Start time: 08:21:59 AM ) Total M a rks: 1
In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
Select correct option:
T(n)
$T(n / 2)$
$\log n$
$\mathrm{n} / 2+\mathrm{n} / 4$

Question \# 6 of 10 ( Start time: 08:23:01 AM ) Total M a r k s: 1
For the sieve technique we solve the problem,
Select correct option:
recursively
mathematically
precisely
accurately
Theta asymptotic notation for $\mathrm{T}(\mathrm{n})$ :
Select correct option:

Set of functions described by: $c 1 g(n)$ Set of functions described by $c 1 g(n)>=f(n)$ for $c 1 s$
Theta for $\mathrm{T}(\mathrm{n})$ is actually upper and worst case comp
Set of functions described by:
c1g(n)

Question \# 8 of 10 ( Start time: 08:24:39 AM ) Total M a r k s: 1
The sieve technique is a special case, where the number of sub problems is just Select correct option:
5
many
1
few
Question \# 9 of 10 ( Start time: 08:25:54 AM ) Total M a rks: 1
Sieve Technique applies to problems where we are interested in finding a single item from a larger set of $\qquad$
Select correct option:
n items
phases
pointers
constant

Question \# 10 of 10 ( Start time: 08:26:44 AM ) Total M a r ks: 1
The sieve technique works in $\qquad$ as follows
Select correct option:
phases
numbers
integers
routines

Memorization is?
To store previous results for future use
To avoid this unnecessary repetitions by writing down the results of recursive calls and looking them up again if we need them later

To make the process accurate
None of the above

Question \# 2 of 10 Total M a rks: 1
Which sorting algorithm is faster
$O(n \log n)$
$O n^{\wedge} 2$
$O n^{\wedge 3}$

Quick sort is
Stable \& in place
Not stable but in place
Stable but not in place
Some time stable \& some times in place

One example of in place but not stable algorithm is
Merger Sort
Quick Sort
Continuation Sort
Bubble Sort

In Quick Sort Constants hidden in $\mathrm{T}(\mathrm{n} \log \mathrm{n})$ are
Large
Medium
Small
Not Known

Continuation sort is suitable to sort the elements in range 1 to k
$K$ is Large
K is not known
K may be small or large
$K$ is small

In stable sorting algorithm.
If duplicate elements remain in the same relative position after sorting
One array is used
More than one arrays are required

Duplicating elements not handled

Which may be a stable sort?

## Merger

Insertion
Both above
None of the above

An in place sorting algorithm is one that uses $\qquad$ arrays for storage

Two dimensional arrays
More than one array

## No Additional Array

None of the above

Continuing sort has time complexity of ?
O(n)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
O(nlogn)
O(k)

We do sorting to,
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

In Sieve Technique we donot know which item is of interest

False
A (an) $\qquad$ is a left-complete binary tree that conforms to the
heap order
heap
binary tree
binary search tree
array
27. The sieve technique works in $\qquad$ as follows
phases
numbers
integers
routines

For the sieve technique we solve the problem,
recursively
mathematically
precisely
accurately
29. For the heap sort, access to nodes involves simple $\qquad$
operations.
arithmetic
binary
algebraic
logarithmic

The analysis of Selection algorithm shows the total running time is indeed $\qquad$ in $n, \backslash$ arithmetic
geometric
linear
orthogonal

For the heap sort, access to nodes involves simple $\qquad$ operations.

Select correct option:
arithmetic
binary
algebraic
logarithmic

Sieve Technique applies to problems where we are interested in finding a
single item from a larger set of $\qquad$

Select correct option:

## n items

phases
pointers
constant

Question \# 9 of 10 ( Start time: 07:45:36 AM ) Total Marks: 1

In Sieve Technique we do not know which item is of interest

Select correct option:
True
False

How much time merge sort takes for an array of numbers?

Select correct option:
$T\left(n^{\wedge} 2\right)$
$T(n)$
$T(\log n)$

## $T(n \log n)$

For the heap sort we store the tree nodes in
Select correct option:
level-order traversal
in-order traversal
pre-order traversal
post-order traversal

Sorting is one of the few problems where provable $\qquad$ bonds exits on how fast we can sort,

Select correct option:
upper
lower
average
$\log n$
single item from a larger set of $\qquad$
Select correct option:
n items
phases
pointers
constant

A heap is a left-complete binary tree that conforms to the $\qquad$
Select correct option:
increasing order only
decreasing order only

## heap order

$(\log n)$ order

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,

Select correct option:
$T(n)$

T(n / 2)
$\log n$
$\mathrm{n} / 2+\mathrm{n} / 4$

The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,

Select correct option:
divide-and-conquer
decrease and conquer
greedy nature

2-dimension Maxima

The sieve technique works in $\qquad$ as follows

Select correct option:
phases
numbers
integers
routines

For the Sieve Technique we take time
Select correct option:
T(nk)
T(n / 3)
n^2
n/3

In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent $\qquad$ series in the analysis,
linear
arithmetic
geometric
exponent

Analysis of Selection algorithm ends up with,

## Select correct option:

## $T(n)$

$\mathrm{T}(1 / 1+n)$
$\mathrm{T}(\mathrm{n} / 2)$
$T((n / 2)+n)$

Quiz Start Time: 07:23 PM
Time Left 90
$\mathrm{sec}(\mathrm{s})$
Question \# 1 of 10 ( Start time: 07:24:03 PM ) Total M a r k s: 1
In in-place sorting algorithm is one that uses arrays for storage :
Select correct option:
An additional array
No additioanal array
Both of above may be true according to algorithm
More than 3 arrays of one dimension.

Time Left 89
$\mathrm{sec}(\mathrm{s})$
Question \# 2 of 10 ( Start time: 07:25:20 PM ) Total M a r k s: 1
Which sorting algorithn is faster :
Select correct option:
$\mathrm{O}\left(\mathrm{n}^{\wedge}\right)$
O(nlogn)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
$\mathrm{O}\left(\mathrm{n}^{\wedge}\right)$

In stable sorting algorithm:
Select correct option:
One array is used
In whcih duplicating elements are not handled.
More then one arrays are required.
Duplicating elements remain in same relative posistion after sorting.

Counting sort has time complexity:
Select correct option:
O(n)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
O(k)
O(nlogn)

Counting sort is suitable to sort the elements in range 1 to k :
Select correct option:
K is large
$K$ is small
K may be large or small
None

## Memorization is :

Select correct option:
To store previous results for further use.
To avoid unnecessary repetitions by writing down the results of recursive calls and looking them again if needed later
To make the process accurate.
None of the above

The running time of quick sort depends heavily on the selection of
Select correct option:
No of inputs
Arrangement of elements in array
Size o elements
Pivot elements

Which may be stable sort:
Select correct option:
Bubble sort
Insertion sort
Both of above

In Quick sort algorithm, constants hidden in T(n $\lg n)$ are
Select correct option:
Large
Medium
Not known
small

Quick sort is
Select correct option:
Stable and In place
Not stable but in place
Stable and not in place
Some time in place and send some time stable

For the Sieve Technique we take time
T(nk)

T(n/3)
$\mathrm{n}^{\wedge} 2$
n/3

The sieve technique is a special case, where the number of sub problems is just

Select correct option:

5

Many

1

Few

The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of, Select correct option:
divide-and-conquer
decrease and conquer
greedy nature

Which may be stable sort:
Select correct option:
Bubble sort
Insertion sort
Both of above
Selection sort

In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent $\qquad$ series in the analysis,
Select correct option:
linear
arithmetic
geometric
exponent

In Quick sort algorithm, constants hidden in T(n $\lg n)$ are
Select correct option:

Large
Medium
Not known
small

How much time merge sort takes for an array of numbers?
Select correct option:
$T\left(n^{\wedge} 2\right)$
$T(n)$
$T(\log n)$
$T(n \log n)$

Counting sort has time complexity:
Select correct option:
$O(n)$
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
O(k)
O(nlogn)

In which order we can sort?
Select correct option:
increasing order only
decreasing order only
increasing order or decreasing order
both at the same time

A (an) $\qquad$ is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array

The analysis of Selection algorithm shows the total running time is indeed $\qquad$ in $n$, Select correct option:
arithmetic
geometric
linear
orthogonal

Quick sort is based on divide and conquer paradigm; we divide the problem on base of pivot element and:
Select correct option:

There is explicit combine process as well to conquer the solution.
No work is needed to combine the sub-arrays, the array is already sorted
Merging the sub arrays
None of above.

Sorting is one of the few problems where provable $\qquad$ bonds exits on how fast we can sort, Select correct option:
upper
lower
average
$\log n$

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as, T(n)
$T(n / 2)$
$\log n$
$\mathrm{n} / 2+\mathrm{n} / 4$

Quick sort is based on divide and conquer paradigm; we divide the problem on base of pivot element and:
There is explicit combine process as w ell to conquer
No w ork is needed to combine the sub-arrays, the a
Merging the subarrays

The number of nodes in a complete binary tree of height $h$ is
$2^{\wedge}(h+1)-1$
2 * $(\mathrm{h}+1)-1$
2 * $(\mathrm{h}+1)$
$\left((h+1)^{\wedge} 2\right)-1$
How many elements do we eliminate in each time for the Analysis of Selection algorithm?
$\mathrm{n} / 2$ elements
( $\mathrm{n} / 2$ ) +n elements
$\mathrm{n} / 4$ elements
2 n elements
Which sorting algorithn is faster :
$\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
O(nlogn)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
$O\left(n^{\wedge} 3\right)$
We do sorting to,
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order
Slow sorting algorithms run in,
$T\left(n^{\wedge} 2\right)$
$T(n)$
$T(\log n)$
$T(n \log n)$
One of the clever aspects of heaps is that they can be stored in arrays without using any

## Pointers

Constants
Variables
Functions

Counting sort is suitable to sort the elements in range 1 to k :
$K$ is large
K is small
$K$ may be large or small
None
We do sorting to, Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

Question \# 2 of 10 ( Start time: 06:19:38 PM ) Total Marks: 1
Heaps can be stored in arrays without using any pointers; this is due to the $\qquad$ nature of the binary tree,
Select correct option:

## left-complete

right-complete
tree nodes
tree leaves

Question \# 3 of 10 ( Start time: 06:20:18 PM ) Total Marks: 1
Sieve Technique can be applied to selection problem?
Select correct option:

## True

False

Question \# 4 of 10 ( Start time: 06:21:10 PM ) Total Marks: 1 A heap is a left-complete binary tree that conforms to the $\qquad$
Select correct option:
increasing order only
decreasing order only
heap order
( $\log \mathrm{n}$ ) order

Question \# 5 of 10 ( Start time: 06:21:39 PM ) Total Marks: 1
A (an) $\qquad$ is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array
Question \# 6 of 10 ( Start time: 06:22:04 PM ) Total Marks: 1
Divide-and-conquer as breaking the problem into a small number of
Select correct option:
pivot
Sieve
smaller sub problems
Selection
Question \# 7 of 10 ( Start time: 06:22:40 PM ) Total Marks: 1
In Sieve Technique we do not know which item is of interest
Select correct option:

True
False

Question \# 8 of 10 ( Start time: 06:23:26 PM ) Total Marks: 1
The recurrence relation of Tower of Hanoi is given below $T(n)=\{1$ if $n=1$ and $2 T(n-1)$ if $n>1 \ln$ order to move a tower of 5 rings from one peg to another, how many ring moves are required?
Select correct option:

16
10
32
31

Question \# 9 of 10 ( Start time: 06:24:44 PM ) Total Marks: 1
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent $\qquad$ series in the analysis,
Select correct option:
linear
arithmetic
geometric
exponent

Question \# 10 of 10 ( Start time: 06:25:43 PM ) Total Marks: 1
For the heap sort, access to nodes involves simple $\qquad$ operations.
Select correct option:
arithmetic
binary
algebraic
logarithmic
For the sieve technique we solve the problem,
Select correct option:
recursively
mathematically
precisely
accurately
The sieve technique works in $\qquad$ as follows
Select correct option:
phases
numbers
integers
routines
Slow sorting algorithms run in,
Select correct option:
$T\left(n^{\wedge} 2\right)$
$\mathrm{T}(\mathrm{n})$
$T(\log n)$
A (an) $\qquad$ is a left-complete binary tree that conforms to the heap order

Select correct option:
heap
binary tree
binary search tree
array

In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent $\qquad$ series in the analysis,
Select correct option:
linear
arithmetic
geometric
exponent

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as, Select correct option:
$\mathrm{T}(\mathrm{n})$
$T(n / 2)$
$\log n$
$\mathrm{n} / 2+\mathrm{n} / 4$

The sieve technique is a special case, where the number of sub problems is just Select correct option:

5
many
1
few
In which order we can sort?
Select correct option:
increasing order only
decreasing order only
increasing order or decreasing order
both at the same time

The recurrence relation of Tower of Hanoi is given below $T(n)=\{1$ if $n=1$ and $2 T(n-1)$ if $n>1 \ln$ order to move a tower of 5 rings from one peg to another, how many ring moves are required?
Select correct option:
16
10
32
31

Analysis of Selection algorithm ends up with, Select correct option:
T(n)
$\mathrm{T}(1 / 1+\mathrm{n})$
$T(n / 2)$
$T((n / 2)+n)$

We do sorting to,
Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

Divide-and-conquer as breaking the problem into a small number of Select correct option:
pivot
Sieve
smaller sub problems
Selection

The analysis of Selection algorithm shows the total running time is indeed $\qquad$ in $n$, Select correct option:
arithmetic
geometric
linear
orthogonal

How many elements do we eliminate in each time for the Analysis of Selection algorithm?
Select correct option:
$\mathrm{n} / 2$ elements
( $\mathrm{n} / 2$ ) +n elements
$\mathrm{n} / 4$ elements
2 n elements

Sieve Technique can be applied to selection problem?
Select correct option:
True
false

For the heap sort we store the tree nodes in Select correct option:
level-order traversal
in-order traversal
pre-order traversal
post-order traversal

One of the clever aspects of heaps is that they can be stored in arrays without using any

Select correct option:
pointers
constants
variables
functions

A (an) $\qquad$ is a left-complete binary tree that conforms to the heap order Select correct option:
heap
binary tree
binary search tree
array

Divide-and-conquer as breaking the problem into a small number of
Select correct option:
pivot
Sieve
smaller sub problems
Selection

Heaps can be stored in arrays without using any pointers; this is due to the $\qquad$ nature of the binary tree,
Select correct option:
left-complete
right-complete
tree nodes
tree leaves

For the sieve technique we solve the problem,
Select correct option:
recursively
mathematically
precisely
accurately
A heap is a left-complete binary tree that conforms to the $\qquad$
Select correct option:
increasing order only
decreasing order only
heap order
$(\log n)$ order

We do sorting to,
Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

How many elements do we eliminate in each time for the Analysis of Selection algorithm?
Select correct option:
$\mathrm{n} / 2$ elements
( $n / 2$ ) $+n$ elements
$\mathrm{n} / 4$ elements
$2 n$ elements

How much time merge sort takes for an array of numbers?
Select correct option:
$T\left(n^{\wedge} 2\right)$
T(n)
$T(\log n)$
$T(n \log n)$

The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of, Select correct option:
divide-and-conquer
decrease and conquer
greedy nature
2-dimension Maxima
Question \# 1 of 10 ( Start time: 08:17:23 AM ) Total M a r k s: 1
The number of nodes in a complete binary tree of height $h$ is
Select correct option:
$2^{\wedge}(h+1)-1$
2 * $(\mathrm{h}+1)-1$
2 * $(\mathrm{h}+1)$
$\left((h+1)^{\wedge} 2\right)-1$
Question \# 2 of 10 ( Start time: 08:18:46 AM ) Total M a r k s: 1
A (an) $\qquad$ is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array
Question \# 3 of 10 ( Start time: 08:19:38 AM ) Total M a r k s: 1
In Sieve Technique we do not know which item is of interest
Select correct option:
True
False

Question \# 4 of 10 ( Start time: 08:20:33 AM ) Total M a r k s: 1
Heaps can be stored in arrays without using any pointers; this is due to the
$\qquad$ nature of the binary tree,
Select correct option:
left-complete
right-complete
tree nodes
tree leaves

Question \# 5 of 10 ( Start time: 08:21:59 AM ) Total M a r k s: 1
In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
Select correct option:
$\mathrm{T}(\mathrm{n})$
$T(n / 2)$
$\log n$
$\mathrm{n} / 2+\mathrm{n} / 4$
Question \# 6 of 10 ( Start time: 08:23:01 AM ) Total M a r k s: 1
For the sieve technique we solve the problem,
Select correct option:
recursively
mathematically
precisely
accurately
Theta asymptotic notation for $\mathrm{T}(\mathrm{n})$ :
Select correct option:
Set of functions described by: $\operatorname{c1g}(\mathrm{n})$ Set of functions described by $\mathrm{c} 1 \mathrm{~g}(\mathrm{n})>=\mathrm{f}(\mathrm{n})$ for c 1 s
Theta for $T(n)$ is actually upper and worst case comp
Set of functions described by:
c1g(n)
Question \# 8 of 10 ( Start time: 08:24:39 AM ) Total M a r k s: 1
The sieve technique is a special case, where the number of sub problems is just Select correct option:
5
many
1
few
Question \# 9 of 10 ( Start time: 08:25:54 AM ) Total M a r k s: 1
Sieve Technique applies to problems where we are interested in finding a single item from a larger set of

## Select correct option:

n items
phases
pointers
constant

Question \# 10 of 10 ( Start time: 08:26:44 AM ) Total M a r k s: 1
The sieve technique works in $\qquad$ as follows
Select correct option:
phases
numbers
integers
routines

Memorization is?
To store previous results for future use
To avoid this unnecessary repetitions by writing down the results of recursive calls and looking them up again if we need them later
To make the process accurate
None of the above
Question \# 2 of 10 Total M a rks: 1
Which sorting algorithm is faster
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$
$0 n^{\wedge} 2$
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
$0 n^{\wedge} 3$

Quick sort is
Stable \& in place
Not stable but in place
Stable but not in place
Some time stable \& some times in place

One example of in place but not stable algorithm is
Merger Sort
Quick Sort
Continuation Sort
Bubble Sort

In Quick Sort Constants hidden in $\mathrm{T}(\mathrm{n} \log \mathrm{n})$ are
Large
Medium
Small
Not Known

Continuation sort is suitable to sort the elements in range 1 to k
K is Large
K is not known
$K$ may be small or large
K is small

In stable sorting algorithm.
If duplicate elements remain in the same relative position after sorting
One array is used
More than one arrays are required
Duplicating elements not handled
Which may be a stable sort?
Merger
Insertion
Both above

## None of the above

An in place sorting algorithm is one that uses $\qquad$ arrays for storage
Two dimensional arrays
More than one array
No Additional Array
None of the above
Continuing sort has time complexity of ?
$\mathrm{O}(\mathrm{n})$
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
$\mathrm{O}(\mathrm{nlogn})$
O(k)
We do sorting to,
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

In Sieve Technique we donot know which item is of interest

## True

False
A (an) $\qquad$ is a left-complete binary tree that conforms to the
heap order
heap
binary tree
binary search tree
array
27. The sieve technique works in $\qquad$ as follows
phases
numbers
integers
routines

For the sieve technique we solve the problem,
recursively
mathematically
precisely
accurately
29. For the heap sort, access to nodes involves simple $\qquad$
operations.
arithmetic
binary
algebraic
logarithmic

The analysis of Selection algorithm shows the total running time is indeed $\qquad$ in $n, \backslash$
arithmetic
geometric
linear
orthogonal
For the heap sort, access to nodes involves simple $\qquad$ operations.
Select correct option:
arithmetic
binary
algebraic
logarithmic

Sieve Technique applies to problems where we are interested in finding a single item from a larger set of $\qquad$
Select correct option:
n items
phases
pointers
constant

Question \# 9 of 10 ( Start time: 07:45:36 AM ) Total Marks: 1
In Sieve Technique we do not know which item is of interest
Select correct option:
True
False

How much time merge sort takes for an array of numbers?
Select correct option:
$T\left(n^{\wedge} 2\right)$
$T(n)$
$T(\log n)$
$T(n \log n)$
For the heap sort we store the tree nodes in
Select correct option:
level-order traversal
in-order traversal
pre-order traversal
post-order traversal

Sorting is one of the few problems where provable $\qquad$ bonds exits on how fast we can sort, Select correct option:
upper
lower
average
$\log n$
single item from a larger set of $\qquad$
Select correct option:
n items
phases
pointers
constant

A heap is a left-complete binary tree that conforms to the $\qquad$
Select correct option:
increasing order only
decreasing order only
heap order
$(\log n)$ order

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as, Select correct option:
$\mathrm{T}(\mathrm{n})$
$T(n / 2)$
$\log n$
$\mathrm{n} / 2+\mathrm{n} / 4$
The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,
Select correct option:
divide-and-conquer
decrease and conquer
greedy nature
2-dimension Maxima

The sieve technique works in $\qquad$ as follows
Select correct option:
phases
numbers
integers
routines
For the Sieve Technique we take time
Select correct option:
T(nk)
$T(n / 3)$
$\mathrm{n}^{\wedge} 2$
n/3
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent $\qquad$ series in the analysis,
linear
arithmetic
geometric
exponent

Analysis of Selection algorithm ends up with,
Select correct option:
$T(n)$
$\mathrm{T}(1 / 1+\mathrm{n})$
$T(n / 2)$
$T((n / 2)+n)$

Quiz Start Time: 07:23 PM
Time Left 90
$\mathrm{sec}(\mathrm{s})$
Question \# 1 of 10 ( Start time: 07:24:03 PM ) Total M a r k s: 1
In in-place sorting algorithm is one that uses arrays for storage :
Select correct option:
An additional array
No additional array
Both of above may be true according to algorithm
More than 3 arrays of one dimension.

Time Left 89
$\mathrm{sec}(\mathrm{s})$
Question \# 2 of 10 ( Start time: 07:25:20 PM ) Total M a r k s: 1
Which sorting algorithn is faster:
Select correct option:
$\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
O(nlogn)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
$\mathrm{O}\left(\mathrm{n}^{\wedge}\right)$
In stable sorting algorithm:
Select correct option:
One array is used
In which duplicating elements are not handled.
More then one arrays are required.
Duplicating elements remain in same relative posistion after sorting.

Counting sort has time complexity:
Select correct option:
$\mathrm{O}(\mathrm{n})$
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
$\mathrm{O}(\mathrm{k})$
$\mathrm{O}(\mathrm{n} \operatorname{logn})$

Counting sort is suitable to sort the elements in range 1 to k :
Select correct option:
$K$ is large
K is small
K may be large or small
None

## Memorization is :

Select correct option:
To store previous results for further use.
To avoid unnecessary repetitions by writing down the results of recursive calls and looking them again if needed later
To make the process accurate.
None of the above

The running time of quick sort depends heavily on the selection of Select correct option:
No of inputs
Arrangement of elements in array
Size o elements
Pivot elements
Which may be stable sort:
Select correct option:
Bubble sort
Insertion sort
Both of above

In Quick sort algorithm, constants hidden in $\mathrm{T}(\mathrm{n} \lg \mathrm{n})$ are
Select correct option:
Large
Medium
Not known
small

Quick sort is
Select correct option:
Stable and In place
Not stable but in place
Stable and not in place
Some time in place and send some time stable

For the Sieve Technique we take time
T(nk)
$\mathrm{T}(\mathrm{n} / 3)$
n^2
n/3
The sieve technique is a special case, where the number of sub problems is just Select correct option:

5
Many
1
Few

The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of, Select correct option:
divide-and-conquer
decrease and conquer
greedy nature
2-dimension Maxima

Quick sort is
Select correct option:
Stable and In place
Not stable but in place
Stable and not in place
Some time in place and send some time stable

Memoization is :
Select correct option:
To store previous results for further use.
To avoid unnecessary repetitions by writing down the results of recursive calls and looking them again if needed later
To make the process accurate.
None of the above

One Example of in place but not stable sort is
Quick
Heap
Merge
Bubble

The running time of quick sort depends heavily on the selection of Select correct option:
No of inputs
Arrangement of elements in array
Size o elements
Pivot elements

Question \# 9 of 10 ( Start time: 07:39:07 PM ) Total M a r k s: 1
In Quick sort algorithm, constants hidden in T(n lg n) are
Select correct option:
Large
Medium
Not known
Small

## Cs502 solved mcqs mega file for papers

1. For the sieve technique we solve the problem,
$\square$ recursivelymathematically
$\square$ precisely
$\square$ accurately
2. We do sorting to,keep elements in random positions
$\square$ keep the algorithm run in linear order
$\square$ keep the algorithm run in ( $\log \mathrm{n}$ ) order
$\square$ keep elements in increasing or decreasing order
3. The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,divide-and-conquer
$\square$ decrease and conquer
$\square$ greedy nature
$\square$ 2-dimension Maxima
4. In Sieve Technique we donot know which item is of interestTrueFalse
5. In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,T(n)T(n / 2)$\log n$n / 2 + n / 4
6. Divide-and-conquer as breaking the problem into a small number ofpivotSievesmaller sub problemsSelection
7. A heap is a left-complete binary tree that conforms to the $\qquad$
$\square$ increasing order onlydecreasing order onlyheap order( $\log \mathrm{n}$ ) order
8. Slow sorting algorithms run in,$T\left(n^{\wedge} 2\right)$
$\square \mathrm{T}(\mathrm{n})$
$\square \mathrm{T}(\log n)$$T(n \log n)$
9. One of the clever aspects of heaps is that they can be stored in arrays without using any $\qquad$ .pointersconstantsvariablesfunctions
10. Sorting is one of the few problems where provable $\qquad$ bonds exits on how fast we can sort,
$\square$ upperIower
$\square$ average
$\square \log n$
$\square$ 2nd
11. For the sieve technique we solve the problem,mathematicallypreciselyaccuratelyrecursively
12. Sieve Technique can be applied to selection problem?truefalse
13. How much time merge sort takes for an array of numbers?
$\square\left(n^{\wedge} 2\right)$
$\square \mathrm{T}(\mathrm{n})$
$\square T(\log n)$

## $T(n \log n)$

14. For the Sieve Technique we take time
T(nk)
$\square \mathrm{T}(\mathrm{n} / 3)$
$\square \mathrm{n}^{\wedge} 2$n/3
15. Heaps can be stored in arrays without using any pointers; this is due to the $\qquad$ nature of the binary tree,left-completeright-completetree nodestree leaves
16. How many elements do we eliminate in each time for the Analysis of Selection algorithm?
$\square \mathrm{n} / 2$ elements
$\square$ (n/2) + $n$ elementsn / 4 elements2 n elements
17. We do sorting to,
$\square$ keep elements in random positions
$\square$ keep the algorithm run in linear order
$\square$ keep the algorithm run in $(\log n)$ orderkeep elements in increasing or decreasing order
18. In which order we can sort?
$\square$ increasing order only
$\square$ decreasing order only
$\square$ increasing order or decreasing order
$\square$ both at the same time
19. A heap is a left-complete binary tree that conforms to the $\qquad$
$\square$ increasing order only
$\square$ decreasing order only
$\square$ heap order
$\square$ (log n) order
20. In the analysis of Selection algorithm, we make a number of passes, in
fact it could be as many as,
$\square \mathrm{T}(\mathrm{n})$
$\square \mathrm{T}(\mathrm{n} / 2)$
$\square \log n$
$\square \mathrm{n} / 2+\mathrm{n} / 4$
21. A heap is a left-complete binary tree that conforms to the $\qquad$ increasing order only
$\square$ decreasing order only
$\square$ heap order
$\square$ (log n) order
22. How much time merge sort takes for an array of numbers?$\mathrm{T}\left(\mathrm{n}^{\wedge} 2\right)$T(n)T( $\log n$ )
$T(n \log n)$
23. One of the clever aspects of heaps is that they can be stored in arrays without using any $\qquad$ .

## pointers

constantsvariablesfunctions24. $n$ the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent $\qquad$ series in the analysis,
$\square$ lineararithmeticgeometricexponent
25. Sieve Technique applies to problems where we are interested in finding a single item from a larger set of $\qquad$n itemsphasespointersconstant
26. A (an) $\qquad$ is a left-complete binary tree that conforms to the heap order
heap
$\square$ binary treebinary search tree
$\square$ array
27. The sieve technique works in $\qquad$ as followsphases
$\square$ numbers
$\square$ integers
$\square$ routines
28. For the sieve technique we solve the problem,
$\square$ recursively
$\square$ mathematically
$\square$ precisely
$\square$ accurately
29. For the heap sort, access to nodes involves simple $\qquad$ operations.
$\square$ arithmetic
$\square$ binary
$\square$ algebraic
$\square$ logarithmic
30. The analysis of Selection algorithm shows the total running time is indeed $\qquad$ in $n$, ,
$\square$ arithmetic
$\square$ geometriclinearorthogonal
Quiz Start Time: 07:39 AM
Time Left 32
$\sec (\mathrm{s})$
Question \# 1 of 10 ( Start time: 07:39:23 AM ) Total Marks: 1
For the sieve technique we solve the problem,
Select correct option:
$\square$ recursivelypreciselyaccurately
Quiz Start Time: 07:39 AM
Time Left 9 $\sec (\mathrm{s})$
Question \# 2 of 10 ( Start time: 07:40:32 AM ) Total Marks: 1
For the heap sort, access to nodes involves simple $\qquad$ operations.
Select correct option:

## arithmetic

$\square$ binary
$\square$ algebraic
$\square$ logarithmic
Quiz Start Time: 07:39 AM
Time Left 76
sec(s)
Question \# 3 of 10 ( Start time: 07:41:58 AM ) Total Marks: 1
We do sorting to,
Select correct option:
$\square$ keep elements in random positions
$\square$ keep the algorithm run in linear order
$\square$ keep the algorithm run in (log n) order
$\square$ keep elements in increasing or decreasing order
Quiz Start Time: 07:39 AM
Time Left 60
sec(s)
Question \# 4 of 10 ( Start time: 07:42:18 AM ) Total Marks: 1
One of the clever aspects of heaps is that they can be stored in arrays without using any $\qquad$ .
Select correct option:
pointers
$\square$ constants
$\square$ variables
Quiz Start Time: 07:39 AM
Time Left 69
sec(s)
Question \# 5 of 10 ( Start time: 07:42:55 AM ) Total Marks: 1
A (an) $\qquad$ is a left-complete binary tree that conforms to the heap order

Select correct option:
heap
$\square$ binary tree
$\square$ binary search tree
$\square$ array
Quiz Start Time: 07:39 AM
Time Left 47
sec(s)
Question \# 6 of 10 ( Start time: 07:43:24 AM ) Total Marks: 1
The analysis of Selection algorithm shows the total running time is indeed in n ,
Select correct option:
$\square$ arithmetic
$\square$ geometric
$\square$ linear
$\square$ orthogonal
Quiz Start Time: 07:39 AM
Time Left 43
$\sec (\mathrm{s})$
Question \# 7 of 10 ( Start time: 07:44:11 AM ) Total Marks: 1
Sieve Technique applies to problems where we are interested in finding a single item from a larger set of $\qquad$ Select correct option:n itemsphasespointersconstant
Quiz Start Time: 07:39 AM
Time Left 68
$\sec (\mathrm{s})$
Question \# 8 of 10 ( Start time: 07:45:06 AM ) Total Marks: 1
Divide-and-conquer as breaking the problem into a small number of Select correct option:
$\square$ pivot
$\square$ Sievesmaller sub problems
$\square$ Selection
Quiz Start Time: 07:39 AM
Time Left 57

## sec(s)

Question \# 9 of 10 ( Start time: 07:45:36 AM ) Total Marks: 1
In Sieve Technique we do not know which item is of interest Select correct option:

True
$\square$ False
Quiz Start Time: 07:39 AM
Time Left 24
sec(s)
Question \# 10 of 10 ( Start time: 07:46:17 AM ) Total Marks: 1
How much time merge sort takes for an array of numbers?
Select correct option:$T\left(n^{\wedge} 2\right)$
$\square \mathrm{T}(\mathrm{n})$
$\square \mathrm{T}(\log \mathrm{n})$
$T(n \log n)$
Quiz Start Time: 07:48 AM
sec(s)
Question \# 1 of 10 ( Start time: 07:48:31 AM ) Total Marks: 1
For the heap sort we store the tree nodes in
Select correct option:
level-order traversal
$\square$ in-order traversalpre-order traversalpost-order traversal
Quiz Start Time: 07:48 AM
Time Left 85

## sec(s)

Question \# 2 of 10 ( Start time: 07:48:53 AM ) Total Marks: 1
One of the clever aspects of heaps is that they can be stored in arrays without using any $\qquad$ .
Select correct option:
pointersconstantsvariables
$\square$ functions
Quiz Start Time: 07:48 AM
Time Left 41
sec(s)
Question \# 3 of 10 ( Start time: 07:49:03 AM ) Total Marks: 1

Sorting is one of the few problems where provable $\qquad$ bonds exits on how fast we can sort,
Select correct option:
upper
Ioweraverage
$\square \log n$
Quiz Start Time: 07:48 AM
Time Left 87
sec(s)
Question \# 4 of 10 ( Start time: 07:49:59 AM ) Total Marks: 1
A (an) $\qquad$ is a left-complete binary tree that conforms to the heap order
Select correct option:
$\square$ heap
$\square$ binary tree
$\square$ binary search tree
$\square$ array
Quiz Start Time: 07:48 AM
Time Left 86
$\sec (\mathrm{s})$
Question \# 5 of 10 ( Start time: 07:50:09 AM ) Total Marks: 1
Sieve Technique applies to problems where we are interested in finding a single item from a larger set of $\qquad$ Select correct option:
n items
$\square$ phasespointersconstant
Quiz Start Time: 07:48 AM
Time Left 86 $\sec (\mathrm{s})$
Question \# 6 of 10 ( Start time: 07:50:20 AM ) Total Marks: 1
How much time merge sort takes for an array of numbers?
Select correct option:$T\left(n^{\wedge} 2\right)$T(n)$T(\log n)$
$T(n \log n)$

Quiz Start Time: 07:48 AM
Time Left 73
sec(s)
Question \# 7 of 10 ( Start time: 07:50:36 AM ) Total Marks: 1
A heap is a left-complete binary tree that conforms to the $\qquad$
Select correct option:
$\square$ increasing order only
$\square$ decreasing order only
$\square$ heap order
$\square$ (log n) order
Quiz Start Time: 07:48 AM
Time Left 62
sec(s)
Question \# 8 of 10 ( Start time: 07:51:04 AM ) Total Marks: 1
In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
Select correct option:
T(n)
$\square \mathrm{T}(\mathrm{n} / 2)$
$\log n$
$\square$ $\qquad$ n / $2+n / 4$
Quiz Start Time: 07:48 AM
Time Left 61
$\sec (\mathrm{s})$
Question \# 9 of 10 ( Start time: 07:51:41 AM ) Total Marks: 1
The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,
Select correct option:
$\square$ divide-and-conquer
decrease and conquer
greedy nature
2-dimension Maxima
Quiz Start Time: 07:48 AM
Time Left 83
sec(s)
Question \# 10 of 10 ( Start time: 07:52:17 AM ) Total Marks: 1
The analysis of Selection algorithm shows the total running time is indeed
$\qquad$ in n ,
Select correct option:
$\square$ arithmeticgeometriclinearorthogonal
Quiz Start Time: 07:53 AM
Time Left 54
$\sec (\mathrm{s})$
Question \# 1 of 10 ( Start time: 07:53:11 AM ) Total Marks: 1
The sieve technique works in $\qquad$ as follows
Select correct option:
phasesnumbersintegersroutines
Quiz Start Time: 07:53 AM
Time Left 86
$\sec (\mathrm{s})$
Question \# 2 of 10 ( Start time: 07:53:53 AM ) Total Marks: 1
Sorting is one of the few problems where provable $\qquad$ bonds exits on how fast we can sort,
Select correct option:
upperIower
average
$\square \log n$
Quiz Start Time: 07:53 AM
Time Left 81
sec(s)
Question \# 3 of 10 ( Start time: 07:54:01 AM ) Total Marks: 1
In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
Select correct option:T(n)
$\square \log n$
$\square \mathrm{n} / 2+\mathrm{n} / 4$
Quiz Start Time: 07:53 AM
Time Left 24
sec(s)
Question \# 4 of 10 ( Start time: 07:54:16 AM ) Total Marks: 1
For the Sieve Technique we take time
Select correct option:T(nk)T(n / 3)$\mathrm{n}^{\wedge} 2$n/3
Quiz Start Time: 07:53 AM
Time Left 87 $\sec (\mathrm{s})$
Question \# 5 of 10 ( Start time: 07:55:31 AM ) Total Marks: 1
A (an) $\qquad$ is a left-complete binary tree that conforms to the heap order
Select correct option:heap
$\square$ binary tree
$\square$ binary search tree
$\square$ array
Quiz Start Time: 07:53 AM
Time Left 86
sec(s)
Question \# 6 of 10 ( Start time: 07:55:40 AM ) Total Marks: 1
For the heap sort we store the tree nodes in
Select correct option:
level-order traversal
$\square$ in-order traversal
pre-order traversal
$\square$ post-order traversal
Quiz Start Time: 07:53 AM
Time Left 58
sec(s)
Question \# 7 of 10 ( Start time: 07:55:51 AM ) Total Marks: 1
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent $\qquad$ series in the analysis,
Select correct option:
$\square$ lineararithmeticgeometricexponent
Quiz Start Time: 07:53 AM
Time Left 85

## sec(s)

Question \# 8 of 10 ( Start time: 07:56:30 AM ) Total Marks: 1
One of the clever aspects of heaps is that they can be stored in arrays without using any $\qquad$ .
Select correct option:
pointersconstantsvariablesfunctions
Quiz Start Time: 07:53 AM
Time Left 12
sec(s)
Question \# 9 of 10 ( Start time: 07:56:41 AM ) Total Marks: 1
Analysis of Selection algorithm ends up with,
Select correct option:T(n)$T(1 / 1+n)$
$\square \mathrm{T}(\mathrm{n} / 2)$
$\square \mathrm{T}((\mathrm{n} / 2)+\mathrm{n})$
Quiz Start Time: 07:53 AM
Time Left 76 sec(s)
Question \# 10 of 10 ( Start time: 07:58:12 AM ) Total Marks: 1
The analysis of Selection algorithm shows the total running time is indeed
$\qquad$ in n ,
Select correct option:arithmetic
$\square$ geometric
$\square$ linear
$\square$ orthogonal

## Question No: 1 ( Marks: 1 ) - Please choose one

An optimization problem is one in which you want to find,

- Not a solution
- An algorithm
- Good solution
- The best solution
http://vustudents.ning.com


## Question No: 2 ( Marks: 1 ) - Please choose one

Although it requires more complicated data structures, Prim's algorithm for a minimum spanning tree is better than Kruskal's when the graph has a large number of vertices.

True
False
Question No: 3 ( Marks: 1 ) - Please choose one
If a problem is in NP, it must also be in $P$.

- True
- False
- unknown


## Question No: 4 ( Marks: 1 ) - Please choose one

What is generally true of Adjacency List and Adjacency Matrix representations of graphs?

- Lists require less space than matrices but take longer to find the weight of an edge (v1,v2)
- Lists require less space than matrices and they are faster to find the weight of an edge (v1,v2)
- Lists require more space than matrices and they take longer to find the weight of an edge ( $\mathrm{v} 1, \mathrm{v} 2$ )
- Lists require more space than matrices but are faster to find the weight of an edge (v1,v2)
Question No: 5 ( Marks: 1 ) - Please choose one
If a graph has $v$ vertices and e edges then to obtain a spanning tree we have to delete
- v edges.
- $\mathrm{v}-\mathrm{e}+5$ edges
- $\mathrm{v}+\mathrm{e}$ edges.
- None of these

Question No: 6 ( Marks: 1 ) - Please choose one
Maximum number of vertices in a Directed Graph may be $\left|\mathrm{V}_{2}\right|$

- True
- False

Question No: 7 ( Marks: 1 ) - Please
choose one
The Huffman algorithm finds a (n) $\qquad$ solution.

- Optimal
- Non-optimal
- Exponential
- Polynomial

Question No: 8 ( Marks: 1 ) - Please choose one
The Huffman algorithm finds an exponential solution

- True
- False

Question No: 9 ( Marks: 1 ) - Please choose one
The Huffman algorithm finds a polynomial solution

- True
- False

Question No: 10 ( Marks: 1 ) - Please choose one
The greedy part of the Huffman encoding algorithm is to first find two nodes with larger frequency.

Question No: 11 ( Marks: 1 ) - Please choose one
The codeword assigned to characters by the Huffman algorithm have the property that no codeword is the postfix of any other.

- True
- False

Question No: 12 ( Marks: 1 ) - Please choose one
Huffman algorithm uses a greedy approach to generate a postfix code $T$ that minimizes the expected length $B(T)$ of the encoded string.

- True
- False

Question No: 13 ( Marks: 1 ) - Please choose one
Shortest path problems can be solved efficiently by modeling the road map as a graph.

- True
- False

Question No: 14 ( Marks: 1 ) - Please
choose one
Dijkestra's single source shortest path algorithm works if all edges weights are non-negative and there are negative cost cycles.

- True
- False

Question No: 15 ( Marks: 1 ) - Please choose one
Bellman-Ford allows negative weights edges and negative cost cycles.

- True
- False

Question No: 16 ( Marks: 1 ) - Please choose one
The term "coloring" came form the original application which was in architectural design.

- True
- False


## Question No: 17 ( Marks: 1 ) - Please choose one

In the clique cover problem, for two vertices to be in the same group, they must be adjacent to each other.

- True
- False

Question No: 18 ( Marks: 1 ) - Please choose one
Dijkstra's algorithm is operates by maintaining a subset of vertices

- True
- False

Question No: 19 ( Marks: 1 ) - Please choose one
The difference between Prim's algorithm and Dijkstra's algorithm is that
Dijkstra's algorithm uses a different key.

- True
- False

Question No: 20 ( Marks: 1 ) - Please choose one

Consider the following adjacency list:
Which of the following graph(s) describe(s) the above adjacency list?
$+$

## Question No: 21 ( Marks: 1 ) - Please choose one

We do sorting to,

- keep elements in random positions
- keep the algorithm run in linear order
- keep the algorithm run in $(\log n)$ order
- keep elements in increasing or decreasing order


## Question No: 22 ( Marks: 1 ) - Please choose one

After partitioning array in Quick sort, pivot is placed in a position such that

- Values smaller than pivot are on left and larger than pivot are on right
- Values larger than pivot are on left and smaller than pivot are on right
- Pivot is the first element of array
- Pivot is the last element of array

Question No: 23 ( Marks: 1 ) - Please choose one
Merge sort is stable sort, but not an in-place algorithm
http://vustudents.ning.com

- True
- False

Question No: 24 ( Marks: 1 ) - Please choose one In counting sort, once we know the ranks, we simply $\qquad$ numbers to their final positions in an output array.

- Delete
- copy
- Mark
- arrange


## Question No: 25 ( Marks: 1 ) - Please choose one

Dynamic programming algorithms need to store the results of intermediate sub-problems. http://vustudents.ning.com

- True
- False

Question No: 26 ( Marks: 1 ) - Please choose one
A $p \times q$ matrix $A$ can be multiplied with $a q \times r$ matrix $B$. The result will be a $p \times r$ matrix $C$. There are ( $p . r$ ) total entries in $C$ and each takes
$\qquad$ to compute.

- O (q)
- O(1)
- O (n2)
- O ( $\mathrm{n}_{3}$ )

Quiz Start Time: 06:18 PM Time Left 55

## sec(s)

Question \# 1 of 10 ( Start time: 06:18:58 PM ) Total Marks: 1
We do sorting to,
Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order
Quiz Start Time: 06:18 PM Time Left 62
$\sec (\mathrm{s})$
Question \# 2 of 10 ( Start time: 06:19:38 PM ) Total Marks: 1
Heaps can be stored in arrays without using any pointers; this is due to the
$\qquad$ nature of the binary tree,
Select correct option:
left-complete
right-complete
tree nodes
tree leaves
Quiz Start Time: 06:18 PM Time Left 77
$\sec (\mathrm{s})$
Question \# 3 of 10 ( Start time: 06:20:18 PM ) Total Marks: 1
Sieve Technique can be applied to selection problem?
Select correct option:
True
False
Quiz Start Time: 06:18 PM Time Left 74
$\sec (\mathrm{s})$
Question \# 4 of 10 ( Start time: 06:21:10 PM ) Total Marks: 1 A heap is a left-complete binary tree that conforms to the $\qquad$
Select correct option:
increasing order only
decreasing order only
heap order
( $\log \mathrm{n}$ ) order
Quiz Start Time: 06:18 PM Time Left 77
sec(s)
Question \# 5 of 10 ( Start time: 06:21:39 PM ) Total Marks: 1
A (an) ___ is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array
Quiz Start Time: 06:18 PM Time Left 72
$\sec (\mathrm{s})$
Question \# 6 of 10 ( Start time: 06:22:04 PM ) Total Marks: 1

Divide-and-conquer as breaking the problem into a small number of Select correct option:
pivot
Sieve
smaller sub problems
Selection
Quiz Start Time: 06:18 PM Time Left 48
$\sec (\mathrm{s})$
Question \# 7 of 10 ( Start time: 06:22:40 PM ) Total Marks: 1
In Sieve Technique we do not know which item is of interest
Select correct option:
True
False
Quiz Start Time: 06:18 PM Time Left 34
sec(s)
Question \# 8 of 10 ( Start time: 06:23:26 PM ) Total Marks: 1
The recurrence relation of Tower of Hanoi is given below $T(n)=\{1$ if $n=1$ and $2 T(n-1)$ if $n>1$ In order to move a tower of 5 rings from one peg to another, how many ring moves are required?
Select correct option:
16
10
32
31 (yeh just tukka hai)
Quiz Start Time: 06:18 PM Time Left 36
$\sec (\mathrm{s})$
Question \# 9 of 10 ( Start time: 06:24:44 PM ) Total Marks: 1
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent $\qquad$ series in the analysis,
Select correct option:
linear
arithmetic
geometric (yeh b gup hi lugti hai)
exponent
Quiz Start Time: 06:18 PM Time Left 76
sec(s)
Question \# 10 of 10 ( Start time: 06:25:43 PM ) Total Marks: 1
For the heap sort, access to nodes involves simple $\qquad$ operations.
Select correct option:
arithmetic
binary
algebraic
logarithmic (bongi hai...)
Quiz Start Time: 06:18 PM Time Left 55
$\sec (\mathrm{s})$

Question \# 1 of 10 ( Start time: 06:18:58 PM ) Total Marks: 1
We do sorting to,
Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order
Start Time: 06:18 PM Time Left 62
$\sec (\mathrm{s})$
Question \# 2 of 10 ( Start time: 06:19:38 PM ) Total Marks: 1
Heaps can be stored in arrays without using any pointers; this is due to the
$\qquad$ nature of the binary tree,
Select correct option:
left-complete
right-complete
tree nodes
tree leaves

Quiz Start Time: 06:18 PM Time Left 77
$\sec (\mathrm{s})$
Question \# 3 of 10 ( Start time: 06:20:18 PM ) Total Marks: 1
Sieve Technique can be applied to selection problem?
Select correct option:
True
False
Question \# 4 of 10 ( Start time: 06:21:10 PM ) Total Marks: 1
A heap is a left-complete binary tree that conforms to the $\qquad$
Select correct option:
increasing order only
decreasing order only
heap order
( $\log \mathrm{n}$ ) order
MC090406557 : Nadia Parveen
Quiz Start Time: 06:18 PM Time Left 77
sec(s)
Question \# 5 of 10 ( Start time: 06:21:39 PM ) Total Marks: 1
A (an) $\qquad$ is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array
Quiz Start Time: 06:18 PM Time Left 72
$\sec (\mathrm{s})$
Question \# 6 of 10 ( Start time: 06:22:04 PM ) Total Marks: 1

Divide-and-conquer as breaking the problem into a small number of Select correct option:
pivot
Sieve
smaller sub problems
Selection
Quiz Start Time: 06:18 PM Time Left 48
$\sec (\mathrm{s})$
Question \# 7 of 10 ( Start time: 06:22:40 PM ) Total Marks: 1
In Sieve Technique we do not know which item is of interest
Select correct option:
True
False
Quiz Start Time: 06:18 PM Time Left 34
$\sec (\mathrm{s})$
Question \# 8 of 10 ( Start time: 06:23:26 PM ) Total Marks: 1
The recurrence relation of Tower of Hanoi is given below $T(n)=\{1$ if $n=1$ and $2 T(n-1)$ if $n>1$ In order to move a tower of 5 rings from one peg to another, how many ring moves are required?
Select correct option:
16
10
32
31
Quiz Start Time: 06:18 PM Time Left 36
$\sec (\mathrm{s})$
Question \# 9 of 10 ( Start time: 06:24:44 PM ) Total Marks: 1
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent $\qquad$ series in the analysis,
Select correct option:
linear
arithmetic
geometric
exponent
Quiz Start Time: 06:18 PM Time Left 76
$\sec (\mathrm{s})$
Question \# 10 of 10 ( Start time: 06:25:43 PM ) Total Marks: 1
For the heap sort, access to nodes involves simple $\qquad$ operations.
Select correct option:
arithmetic
binary
algebraic
logarithmic
Question \# 1 of 10 ( Start time: 10:02:41 PM ) Total Marks: 1
For the sieve technique we solve the problem,

Select correct option:
recursively
mathematically
precisely
accurately
The sieve technique works in $\qquad$ as follows
Select correct option:
phases
numbers
integers
routines
Slow sorting algorithms run in,
Select correct option:
T(n^2)
T(n)
$T(\log n)$
A (an) $\qquad$ is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent $\qquad$ series in the analysis,
Select correct option:
linear
arithmetic

## geometric

exponent
In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
Select correct option:
$\mathrm{T}(\mathrm{n})$
T(n / 2)
$\log n$
n/2+n/4
The sieve technique is a special case, where the number of sub problems is just
Select correct option:
5
many
1
few
In which order we can sort?
Select correct option:
increasing order only
decreasing order only
increasing order or decreasing order
both at the same time
The recurrence relation of Tower of Hanoi is given below $T(n)=\{1$ if $n=1$ and $2 T(n-1)$ if $n>1$ In order to move a tower of 5 rings from one peg to another, how many ring moves are required?
Select correct option:
16
10
32
31
Analysis of Selection algorithm ends up with,
Select correct option:
$\mathrm{T}(\mathrm{n})$
$\mathrm{T}(1 / 1+\mathrm{n})$
T(n/2)
$\mathbf{T}(\mathbf{n} / 2)+n)$
Last message received on 10/13 at 12:43 AM
Khanjee: We do sorting to,
Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order
Khanjee: Divide-and-conquer as breaking the problem into a small number of
Select correct option:
pivot
Sieve

## smaller sub problems

Selection
The analysis of Selection algorithm shows the total running time is indeed
$\qquad$ in n ,
Select correct option:
arithmetic
geometric

## linear

orthogonal
How many elements do we eliminate in each time for the Analysis of
Selection algorithm?
Select correct option:
n / 2 elements
( $\mathrm{n} / 2$ ) +n elements
$\mathrm{n} / 4$ elements
2 n elements
Sieve Technique can be applied to selection problem?

Select correct option:

## True

For the heap sort we store the tree nodes in
Select correct option:
level-order traversal
in-order traversal
pre-order traversal
post-order traversal
Question No: 1 ( Marks: 1 ) - Please choose one
Random access machine or RAM is a/an

- Machine build by Al-Khwarizmi
- Mechanical machine
- Electronics machine
- Mathematical model

Question No: 2 ( Marks: 1 ) - Please choose one
is a graphical representation of an algorithm

- $\square$ notation
- $\square$ notation
- Flowchart
- Asymptotic notation

Question No: 3 ( Marks: 1 ) - Please choose one
A RAM is an idealized machine with $\qquad$ random-access memory.

- 256MB
- 512MB
- an infinitely large
- 100GB

Question No: 4 ( Marks: 1 ) - Please choose one
What type of instructions Random Access Machine (RAM) can execute?
Choose best answer

- Algebraic and logic
- Geometric and arithmetic
- Arithmetic and logic
- Parallel and recursive


## Question No: 5 ( Marks: 1 ) - Please choose one

What will be the total number of max comparisons if we run brute-force maxima algorithm with n elements? http://vustudents.ning.com

- $n_{2}$
$>_{2}$
n
$n$
$\rightarrow n$
- $n_{8}$

Question No: 6 ( Marks: 1 ) - Please choose one
What is the solution to the recurrence $T(n)=T(n / 2)+n$.
http://vustudents.ning.com

- $O(\log n)$
- $O(n)$
- $O(n \log n)$
- $O\left(n_{2}\right)$


## Question No: 7 ( Marks: 1 ) - Please choose one

Consider the following code:
For(j=1; j<n;j++)
For $(\mathrm{k}=1$; $\mathrm{k}<15 ; \mathrm{k}++$ )
For (l=5; l<n; l++)
\{
Do_something_constant();
\}
What is the order of execution for this code.

- O(n)
- $\mathrm{O}\left(n_{3}\right)$
- $\mathrm{O}\left(n_{2} \log n\right)$
- $\mathrm{O}\left(\mathrm{n}_{2}\right)$

Question No: 8 ( Marks: 1 ) - Please choose one
Consider the following Algorithm:
Factorial (n)\{
if ( $\mathrm{n}=1$ )
return 1
else
return ( n * Factorial(n-1))
\{
Recurrence for the following algorithm is:

- $T(n)=T(n-1)+1$
- $\mathrm{T}(\mathrm{n})=\mathrm{nT}(\mathrm{n}-1)+1$
- $T(n)=T(n-1)+n$
- $T(n)=T(n(n-1))+1$

Question No: 9 ( Marks: 1 ) - Please choose one
What is the total time to heapify?

- O(log $n$ )
- $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
- $\mathrm{O}\left(\mathrm{n}_{2} \log \mathrm{n}\right)$
- $\mathrm{O}\left(\log _{2} \mathrm{n}\right)$

Question No: 10 ( Marks: 1 ) - Please choose one
When we call heapify then at each level the comparison performed takes time

- It will take $\boldsymbol{O}$ (1)
- Time will vary according to the nature of input data
- It can not be predicted
- It will take $\Theta(\log \mathrm{n})$

Question No: 11 ( Marks: 1 ) - Please choose one
In Quick sort, we don't have the control over the sizes of recursive calls

- True
- False
- Less information to decide

Either true or false

## Question No: 12 ( Marks: 1 ) - Please choose one

Is it possible to sort without making comparisons?

- Yes
- No

Question No: 13 ( Marks: 1 ) - Please choose one If there are $\Theta\left(\mathrm{n}_{2}\right)$ entries in edit distance matrix then the total running time is
$-\Theta(1)$

- $\Theta$ ( $\mathrm{n}_{2}$ )
- $\Theta(\mathrm{n})$
- $\Theta(\mathrm{n} \log \mathrm{n})$

Question No: 14 ( Marks: 1 ) - Please choose one
For Chain Matrix Multiplication we can not use divide and conquer approach because,

- We do not know the optimum $k$
- We use divide and conquer for sorting only
- We can easily perform it in linear time
- Size of data is not given

Question No: 15 ( Marks: 1 ) - Please choose one
The Knapsack problem belongs to the domain of $\qquad$ problems.

- Optimization
- NP Complete
- Linear Solution
- Sorting
http://vustudents.ning.com


## Question No: 16 ( Marks: 1 ) - Please choose one

Suppose we have three items as shown in the following table, and suppose the capacity of the knapsack is 50 i.e. $\mathrm{W}=50$.
Item Value Weight
16010
210020
312030
The optimal solution is to pick

- Items 1 and 2
- Items 1 and 3
- Items 2 and 3
- None of these


## Question No: 17 ( Marks: 2 )

Describe an efficient algorithm to find the median of a set of 106 integers; it is known that there are fewer than 100 distinct integers in the set

CS502 - Fundamentals of Algorithms
File Version Update: (Dated: 28-Nov-2011)

- MCQs GIGA File
(Done)

6. My Composed MCQs from Lecture 1_to 12 Included

## Current paper of Cs502 Fall 2011

## 28 november 2011

Mcqs past paper men say koi aik 2 hi tha bs
20 MCQs most about running time and worst case time of algorithms.
8. Worst case for edit distance algorithm? What is the
simple change that can change the worst case time ? 5 marks
9. Write Pseudo code for KNAPSACK algorithm? 5 marks
10. Spelling correction in edit distance? 3 marks
11. Differentiate $\mathrm{b} / \mathrm{w}$ Bubble sort, insertion sort and selection sort?
7.marks
9. Average case and worst case time for quick sort? 2 marks

Another Paper,
9. Suggest and describe modifications of the implementation of quick sort that will improve its performance. (05 marks)
10. Complete given cost table. (05 marks)
11. Why do we analyze the average case performance of a randomized algorithm and not its worse case performance. (03 marks)
12. Why value in row of a dynamic programming table of knapsack is always non-decreasing? (03 marks)
13. How we build heap? (02 marks)
14. Find cost of (A1(A2A3)). (02 marks)
Table of Content
FILE VERSION UPDATE: (DATED: 30-NOV-2011) ..... 1
CURRENT PAPER OF CS502 FALL 2011 ..... 2
THANKS TO THISE WHO SHARED AND SHARING NOW ..... 2
table of content ..... 3
MCQZ ..... 4
MCQz (Set-1) From Lecture 1 to 12 ..... 4
MCQz (Set-2) Lecture wise MCQs ..... 25
MCQz (Set-3) ..... 35
MCQz (Set-4) ..... 36
MCQz (Set-5) ..... 37
MCQz (Set-6) ..... 38
MCQz (Set-7) ..... 39
MCQz (Set-8) ..... 41
MCQz (Set-9) ..... 42
MCQz (Set-10) ..... 44
MCQz (Set-11) ..... 46
MCQz (Set-12) ..... 47
MCQz (Set-13) ..... 51
MCQz (Set-14) ..... 53
MCQz (Set-15) ..... 55
MCQz (Set-16) ..... 56
MCQz (Set-17) ..... 57
MCQz (Set-18) ..... 60
MCQz (Set-19) ..... 62
MCQz (Set-20) ..... 64
MCQz (Set-21) ..... 67
MCQz (Set-22) ..... 68
MCQz (Set-23) ..... 70
MCQz (Set-24) ..... 72
MCQz (Set-26) From 2004 Paper ..... 73
MCQz (Set-27) From 2004 Paper ..... 75
MCQz (Set-28) From 2007 Paper ..... 76
MCQz (Set-1) From Lecture 1 to 12
This is my Own Compilation from Handouts

$\qquad$
.(Author: Muhammad Ishfaq)

## Questions

Question No: 1 The word Algorithm comes from the name of the muslim author
9. Ibne-ul Hasem
10. Abu Ja'far Mohammad ibn Musa alKhowarizmi
11. Jaber Bin Hayan
12. None

Correct Option :
Question No:

Correct Option :
Question No:

B
3 Al-Khwarizmi died $\qquad$ C.E. $\qquad$
A. around 900
B. around 700
C. around 840

Correct Option :
Question No:

B
2 Abu Ja'far Mohammad ibn Musa al-Khowarizmi was born in the eighth century at Khwarizm (Kheva), in $\qquad$
A. Iraq
B. Uzbekistan
C. Turkey

C
4 Al-Khwarizmi's work was written in a book titled al Kitab almukhatasar fi hisab al-jabr wa'l-muqabalah (The Compendious Book on Calculation by Completion and Balancing)

## A. True

False

Correct Option :
Question No:

A
5 An $\qquad$ is thus a sequence of computational steps that transform the input into output. $\qquad$
A. Data Structure
B. Data Process

## C. Algorithm

D. none

## Correct Option :

Question No:

Correct Option :
Question No:

Correct Option :
Question No:

C
6 Like a program, an algorithm is a mathematical entity, which is not independent of a specific programming language, machine, or compiler. $\qquad$
A. True
B. False

B
7 $\qquad$ of the courses in the computer science program deal with efficient algorithms and data structures, $\qquad$
A. None
B. Many
C. Some

## B

8 Compilers, operating systems, databases, artificial intelligence, computer graphics and vision, etc. use algorithm. $\qquad$
A. False
B. True

B
9 This course will consist of following major section(s). Select Correct Option
1.The first is on the mathematical tools necessary for the analysis of algorithms. This will focus on asymptotics, summations, recurrences.
2- The second element will deal with one particularly important algorithmic problem: sorting a list of numbers.
3-The third of the course will deal with a collection of various algorithmic problems and solution techniques.
4- Finally we will close this last third with a very brief introduction to the theory of NP-completeness.
A. 1-2
B. 1-2-3
C. 1-3-4

## 8. All

## Correct Option : D

Question No: $\mathbf{1 0}$ NP-complete problem are those for which $\qquad$ algorithms are known, but no one knows for sure whether efficient solutions might exist $\qquad$
9. efficient
10. no efficient
11. none

## Correct Option : <br> B

Question No: 11 Analyzig algorithms in terms of the amount of computational resources that the algorithm requires. These resources include mostly $\qquad$
9. running time
10. memory
11. running time and memory
12. none

## Correct Option : <br> C

Question No: 12 Ideally this model should be a reasonable abstraction of a standard generic single-processor machine. We call this model 8.

RAM Memory
ROM Memory
random access machine or RAM

## Correct Option : <br> C

Question No: 13 A RAM is an idealized machine with $\qquad$
A. an infinitely large random-access memory.
B. with Instructions are executed one-by-one (there is no parallelism)
C. single processor machine
D. all

## Correct Option : D

Question No: 14 We assume that in RAM machine, each basic operation takes
the $\qquad$ constant time to execut.
A. same

## B. different

## Correct Option : A

Question No: 15 A point $p$ in 2-dimensional space be given by its integer coordinates, $p=(p . x, p . y)$.
A. true
B. false

## Correct Option : A

Question No: 16 A point p is not said to be dominated by point q if $\mathrm{q} \cdot \mathrm{x} \leq \mathrm{p} \cdot \mathrm{x}$ and $\mathrm{q} . \mathrm{y} \leq \mathrm{p} . \mathrm{y}$.
A. true
B. false

## Correct Option : <br> A

Question No: 17 Given a set of n points, $\mathrm{P}=\{\mathrm{p} 1, \mathrm{p} 2, \ldots ., \mathrm{pn}\}$ in 2 -space a point is said to be $\qquad$ if it is not dominated by any other point in P .
A. maximal
B. mininal
C. average

## Correct Option : <br> A

Question No:
Brute-force algorithm is defined as ,It is a very general problemsolving technique that consists of systematically enumerating all possible candidates for the solution and checking whether each candidate satisfies the problem's statement.s
A. false
B. true

## Correct Option : B

Question No: 19 There are no formal rules to the syntax of the pseudo code. $\qquad$
A. true
B. false

## Correct Option :

A
Question No:
20 From the figure select the correct statement. $\qquad$

A. Point $(4,11)$ dominate $(7,7)$
B. Point $(7,13)$ dominate $(9.10)$
C. Point $(7,13)$ dominate $(7,7)$
D. Point $(13,3)$ dominate $(9,10)$

## Correct Option : C

Question No: 21 Worst-case time is the maximum running time over all (legal) inputs of size $n$ is given in figure where I denote an input instance, let $|\mathrm{I}|$ denote its length, and let $\mathrm{T}(\mathrm{I})$ denote the running time of the algorithm on input I . $\qquad$
$T_{\text {worst }}(n)=\max _{\mathrm{I}=\mathrm{n}} \mathrm{T}(\mathrm{I})$
A. false
B. true

## Correct Option : B

Question No: 22 $\qquad$ is the average running time over all inputs of size n . Let $\mathrm{p}(\mathrm{I})$ denote the probability of seeing this input. The average-case time is the weighted sum of running times with weights. $\qquad$
$\mathrm{T}_{\text {worst }}(\mathrm{n})=\max _{\mathrm{I}=\mathrm{n}} \mathrm{T}(\mathrm{I})$
A. Worst-case time
B. Average-case time
C. none

## Correct Option : B

Question No: 23 When n is large, $\mathrm{n}^{\wedge} 2$ term will be much larger than the n term and will dominate the running time.
A. true
B. false

## Correct Option :

Question No:

A
24 We will say that the worst-case running time is $\Theta\left(n^{\wedge} 2\right)$. This is called $\qquad$
A. the asymptotic growth rate of the function.
B. itteration growth rate of the function.
C. recursive growth rate of the function.
D. none

## Correct Option : <br> A

Question No:
25 Given a finite sequence of values a1, a2, .., an, their sum a1 $+\mathrm{a} 2+\ldots+\mathrm{an}$ is expressed in summation notation as (click figure to see) $\qquad$
$\sum_{i=1}^{n} a_{i}$
A. true
B. false

## Correct Option :

Question No:

Correct Option :
Question No:
A
27 Formule in figure is $\qquad$
$\sum_{i=1}^{n} a_{i}+b_{j}-\sum_{i=1}^{2} a_{i}+\sum_{i=1}^{a}$
A. correct
B. wrong

Correct Option :
Question No:
A
28 Figure shows $\qquad$

$$
\begin{aligned}
\sum_{i=1}^{n} i & =1+2+\ldots+n \\
& =\frac{n(n+1)}{2}=\theta\left(n^{2}\right)
\end{aligned}
$$

A. Arithmetic series
B. HArmonic series
C. Geometric series
D. none

## Correct Option : <br> A

Question No: 29 Figure shows, $\qquad$ $\sum_{i=1}^{n} i^{2}-1-4-y^{2}+\ldots+n^{2}$ $=\frac{2 n^{4}+3 n^{2}+n}{6}=\theta\left(n^{3}\right)$
A. Arithmatic series
B. Quadratic series
C. Harmonic series
D. Geometric series

## Correct Option :

B
Question No:
30 Figure shows ....... and If $0<x<1$ then this is $\Theta(1)$, and if $x>$ 1 , then this is $\Theta\left(\mathrm{x}^{\wedge} \mathrm{n}\right)$. $\qquad$

$$
\begin{aligned}
\sum_{i=1}^{n} x^{2} & =1+x+x^{2}+\ldots+x^{n} \\
& =\frac{\left.x^{n+1}\right)-1}{x-1}=\theta\left(n^{2}\right)
\end{aligned}
$$

A. Quadratic series
B. Arithmatic series
C. Geometric series
D. Harmonic series

## Correct Option :

C
Question No:
31 For $\mathrm{n} \geq 0$, figure shows ... $\qquad$
$H_{n}=\sum_{=1}^{\pi} \frac{1}{1}$
$=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}=\ln n$
A. Geometric series
B. Quadratic series
C. Arithmetic series
D. Harmonic series

## Correct Option : <br> D

Question No: 32 We write out the loops as summations and then solve the
summations.
A. true
B. false

## Correct Option :

Question No:

## Correct Option :

Question No:

## Correct Option :

Question No:

A
33 A point p is said to dominated by point q if $\mathrm{p} . \mathrm{x} \leq \mathrm{q} \cdot \mathrm{x}$ and $\mathrm{p} . \mathrm{y} \leq$ q.y
A. true
B. false

A
34 We introduced a brute-force algorithm that ran in $\qquad$
A. $\Theta(\mathrm{n})$ time
B. $\Theta\left(n^{\wedge} 2\right)$ time
C. $\Theta$ (nlogn) time
D. $\Theta\left(n^{\wedge} 3\right)$ time

B
35 The problem with the brute-force algorithm is that it uses in pruning out decisions. $\qquad$
A. intelligence
B. no intelligence

B
36 This follows from the fact that dominance relation is
A. symmetric.
B. transitive.
C. non-transitive.

## Correct Option : B

Question No: 37 This approach of solving geometric problems by sweeping a line across the plane is called
A. plane sweep.
B. brute force.

Correct Option :
Question No:
A
38 Sorting takes $\qquad$ time. $\qquad$
A. $\Theta(\mathrm{n})$
B. $\Theta\left(n^{\wedge} 2\right)$
C. $\Theta(\mathrm{n} \log \mathrm{n})$
D. none

## Correct Option : C

Question No: 39 Plane-sweep Algorithm, the inner while-loop $\qquad$ execute more than $n$ times over the entire course of the algorithm. $\qquad$
A. can
B. cannot

Correct Option :
B
Question No: 40 The runtime of entire plane-sweep algorithm is $\Theta(\mathrm{n} \log \mathrm{n})^{\ldots}$
A. true
B. false

## Correct Option : A

Question No: 41 For $n=1,000$, 000, if plane-sweep takes 1 second, the bruteforce will take about $\qquad$
A. 14 hours
B. 14 minutes

## Correct Option : A

Question No: 42 If $n$ is not very large, then almost any algorithm $\qquad$ be fast. $\qquad$
A. may
B. may be not
C. will
D. none

## Correct Option : C

Question No: 43 Given any function $g(n)$, we define $\Theta(g(n))$ to be a set of functions that asymptotically equivalent to $g(n)$. Formally: $\qquad$
$\Theta(\mathrm{g}(\mathrm{n}))=\{\mathrm{f}(\mathrm{n}) \mid$ there exist positive
constants $\mathrm{c}_{1}, \mathrm{c}_{2}$ and $\mathrm{n}_{0}$ such that
$0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)$
for all $\left.n \geq n_{0}\right\}$
A. true
B. false

Question No: 44 This is written as " $\mathrm{f}(\mathrm{n}) \mathrm{E} \Theta(\mathrm{g}(\mathrm{n})$ )" That is, $\mathrm{f}(\mathrm{n})$ and $\mathrm{g}(\mathrm{n})$ are asymptotically equivalent. This means that they have essentially the $\qquad$ growth rates for large $n$. $\qquad$ A. different
B. same

## Correct Option : B

Question No: 45 All given function are all asymptotically equivalent. As $n$ becomes large, the dominant (fastest growing) term is some constant times $\mathrm{n}^{\wedge} 2$. $\qquad$

- $4 n^{2}$.
- $\left(8 n^{2}+2 n-3\right)$.
- $\left(n^{2} / 5+\sqrt{1 n}-10 \log n\right)$
- nin-3)
A. true
B. false


## Correct Option :

A
Question No: 46 Lower bound $f(n)=8 n 2+2 n-3$ grows asymptotically at least as fast as $\mathrm{n}^{\wedge} 2$,
A. true
B. false

## Correct Option :

A
Question No:
47 Upper bound $f(n)$ grows no faster asymptotically than $n^{\wedge} 2$, $\qquad$
A. true
B. false

## Correct Option : <br> A

Question No: 48 Figure does not show Asymptotic Notation Example $\qquad$

A. true
B. false

## Correct Option : B

Question No: 49 The $\qquad$ is used to state only the asymptotic upper
bounds.
$O(g(n)\}=\{t|\bar{n}|$ there exist positive
constants $c$ and $n_{d}$ such that
$0 \leq f(n) \leq c g(n)$
for all $n \geq n_{0}$
A. theta notation
B. O-notation
C. $\Omega$-notation

## Correct Option : B

Question No: 50 The $\qquad$ allows us to state only the asymptotic lower bounds. $\qquad$
$0 \mid g(\mathrm{~m}\})-\{\mathrm{f} / \mathrm{n} \mid\} \mid$ fiere exist positive
constants of and $n_{\mathrm{e}}$ such that
$0 \leq \operatorname{cg}\{n \leq f(n)$
for all $\pi \geq r_{0}$ :
A. $\Omega$-notation
B. O-notation

## Correct Option :

Question No:
A
51 The three notations:

$$
\begin{array}{rl}
\overline{\Theta(g}(n)): 0 \leq c_{1} g(n) \leq f(n) \leq c_{2 g}(n) \\
O(g(n)): 0 & 0 f(n) \leq c g(n) \\
\Omega(g(n)): & 0 \leq c g(n) \leq f(n) \\
\text { for all } n \geq n_{0}
\end{array}
$$

A. true
B. false

## Correct Option :

A
Question No: 52 Limit rule for $\Theta$-notation: $\qquad$
$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=c$,
A. true
B. false

Correct Option :
Question No:
A
53 The limit rule for O-notation is $\qquad$
$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=c$,
A. true
B. false

Correct Option :
A
Question No: 54 limit rule for $\Omega$-notation: $\qquad$
$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)} \neq 0$,
A. true
B. false

## Correct Option :

Question No:
A
55 Here is a list of common asymptotic running times:

- $\Theta(1)$ : Constant time; can't beat it!
- $\Theta(\log n)$ : Inserting into a balanced binary tree; time to find an item in a sorted array of length $n$ using binary search.
- $\Theta(\mathrm{n})$ : About the fastest that an algorithm can run.
- $\Theta(\mathrm{n} \log \mathrm{n})$ : Best sorting algorithms.
- $\Theta(\mathrm{n} 2), \Theta(\mathrm{n} 3)$ : Polynomial time. These running times are acceptable when the exponent of $n$ is small or $n$ is not to large, e.g., $\mathrm{n} \leq 1000$.
- $\Theta(2 \mathrm{n}), \Theta(3 \mathrm{n})$ : Exponential time. Acceptable only if n is small, e.g., $\mathrm{n} \leq 50$.
- $\Theta(\mathrm{n}!), \Theta(\mathrm{nn})$ : Acceptable only for really small n, e.g. $\mathrm{n} \leq 20$ $\qquad$
A. true
B. false


## Correct Option : A

Question No: 56 Ancient Roman politicians followed an important principle of good algorithm design known as Divide and Conquer Strategy.
A. true
B. false

## Correct Option : <br> A

Question No:
57 The main elements to a divide-and-conquer solution are $\qquad$
A. Divide: the problem into a small number of pieces
B. Conquer: solve each piece by applying divide and conquer to it recursively
C. Combine: the pieces together into a global solution
D. All of the above.

Correct Option : Question No:

D
58 The merge sort algorithm works by $\qquad$
A. (Divide:) split A down the middle into two subsequences, each of size roughly n/2
B. (Conquer:) sort each subsequence by calling merge sort recursively on each.
C. (Combine:) merge the two sorted subsequences into a single sorted list.
D. All of the above.

## Correct Option :

D
Question No:

## Correct Option :

Question No:

## Correct Option :

Question No:

A
60 The iteration method does not turn the recurrence into a summation $\qquad$
$T(n)= \begin{cases}1 & \text { if } n=1, \\ T([n / 2])+T([n / 2\rfloor)+n & \text { otherwise }\end{cases}$
A. false
B. true

A
61 Define the $\qquad$ of an element to be one plus the number of elements that are smaller.
A. Rank
B. Degree

## Correct Option : <br> A

Question No:

62 Thus, the rank of an element is its final position if the set is
A. sorted.
B. unsorted.
C. unchanged.
D. same

A
63 The minimum is of rank $\qquad$ and the maximum is of rank
A. 0,1
B. $0, \mathrm{n}$
C. $1, n$
D. none

Correct Option : C
Question No:
64 Test
A. Choice 1
B. Choice 2
C. Choice 3
D. None

## Correct Option : D

Question No: 65 Floor and ceilings $\qquad$ a pain to deal with. $\qquad$
A. are not
B. are
C. sometime
D. none

## Correct Option : B

Question No:
66 Iteration $\qquad$ powerful technique for solving recurrences $\qquad$
A. is a not a
B. might be
C. is a very

Correct Option : C
Question No: 67 Merge of two lists of size $m / 2$ to a list of size $m$ takes $\Theta(m)$ time, which we will just write as m . $\qquad$
A. True
B. False

Correct Option : A
Question No:
68 The figure is a $\qquad$

A. Selection sort Recurrence Tree
B. Merge sort Recurrence Tree
C. Both
D. None

## Correct Option :

Question No:

## Correct Option : <br> B

Question No: 70 The rank of an element is its final position if the set is sorted $\qquad$
A. true
B. false

Correct Option :
Question No:

A
71 Consider the set: $\{5,7,2,10,8,15,21,37,41\}$. The rank of each number is its position in the sorted order.
For example, rank of 8 is $\qquad$ , one plus the number of elements $\qquad$ 8 which is 3 $\qquad$

| position | $I$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | ---: | ---: | ---: | ---: | ---: |
| Number | 2 | 5 | 7 | 8 | 10 | 15 | 21 | 37 | 41 |

A. 3, equal to
B. 4 , greater then
C. 3, smaller then
D. 4 , smaller then

## Correct Option : D

Question No: 72 Given a set $A$ of $n$ distinct numbers and an integer $k, 1 \leq k \leq n$, output the element of A of rank k .This problem is of type
A. Merge Sort
B. Selection Sort
C. Maximal

## Correct Option : <br> B

Question No: 73 If n is odd then the median is defined to be element of rank
A. $\quad$ n
B. $n-1$
C. $(n+1) / 2$
D. $\mathrm{n} / 2$

## Correct Option : C

Question No: 74 When n is even, for median, there are two choices: $\qquad$
A. $\mathrm{n} / 2$
B. $(\mathrm{n}+1) / 2$
C. $n / 2$ and $(n+1) / 2$.
D. none

## Correct Option : C

Question No: 75 Medians are useful as a measures of the $\qquad$ of a set
A. mode
B. average
C. probability
D. central tendency

## Correct Option : D

Question No: $\mathbf{7 6}$ Central tendency of a set is useful when the distribution of values is $\qquad$ .-_
A. skewed
B. not skewed
C. highly skewed

## D. straight

## Correct Option : C

Question No: 77 The median income in a community is a more meaningful measure than average. Suppose 7 households have monthly incomes 5000, 7000, 2000, 10000, 8000, 15000 and 16000. In sorted order, the incomes are 2000, 5000, 7000, 8000, 10000, 15000,16000 . The median income is 8000 ; median is element with rank 4: $(7+1) / 2=4$. The average income is 9000. Suppose the income 16000 goes up to 450,000 . The median is still 8000 but the average goes up to 71,000 . Clearly, the average is not a good representative of the majority income levels.

## A. Above statement is true

B. Above statement is false

## Correct Option : A

Question No: 78 Sorting requires $\qquad$ time $\qquad$
A. $\quad \Theta(\log n)$
B. $\Theta\left(n^{*} 2 \log n\right)$
C. $\Theta(n \log n)$
D. $\Theta(\mathrm{n})$

## Correct Option : C

Question No: 79 In particular, is it possible to solve the selections problem in $\Theta(\mathrm{n})$ time? $\qquad$
A. no.
B. yes.
C. yes. However, the solution is far from obvious

## Correct Option : C

Question No: $\mathbf{8 0}$ A very important special case of divide-and-conquer, which I call the sieve technique. $\qquad$
A. false
B. true

## Correct Option : B

Question No: $\mathbf{8 1}$ We think of divide-and-conquer as breaking the problem into a small number of bigger sub-problems, which are then solved recursively.
A. true

## B. false

## Correct Option : <br> A

Question No:

Correct Option : C
Question No:
83 In particular "large enough" means that the number of items is at least some fixed constant fraction of $n(e . g . n / 2, n / 3)$. $\qquad$
A. true
B. false

Correct Option : A
Question No:
84 The following figure shows a partitioned array: $\qquad$

A. true
B. false

## Correct Option : A

Question No: 85 Sieve example: select 6th smallest element is shown in fig

A. true
B. false

Correct Option :
Question No:

A
86 Ideally, $x$ (pivot) should have a rank that is neither too large or too small.
A. true
B. false

## Correct Option : A

Question No: $\mathbf{8 7}$ In sorting, we are given an array $A[1 . . n]$ of $n$ numbers We are to reorder these elements into increasing (or decreasing) order. $\qquad$
A. false
B. true

## Correct Option : B

Question No: $\mathbf{8 8}$ More generally, A is an array of objects and we sort them based on one of the attributes - the key value.
A. true
B. false

## Correct Option : A

Question No: $\mathbf{8 9}$ There are a number of well-known ___ $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$ sorting algorithms. $\qquad$
A. fast
B. slow

## Correct Option : B

Question No: 90 Scan the array. Whenever two consecutive items are found that are out of order, swap them. Repeat until all consecutive items are in order. It is called $\qquad$
A. Insertion sort
B. Bubble sort
C. Selection sort
D. none

## Correct Option : B

Question No: 91 Assume that A[1..i - 1] have already been sorted. Insert A[i] into its proper position in this sub array. Create this position by shifting all larger elements to the right.It is called
A. Bubble sort
B. Selection sort
C. Merge sort
D. none

## Correct Option : D

Question No: 92 Assume that A[1..i - 1] contain the i-1 smallest elements in sorted order. Find the smallest element in $\mathrm{A}[i . . n]$ Swap it with
$\mathrm{A}[\mathrm{i}]$.It is called

## A. Selection sort

B. Insertion sort
C. Merge sort
D. Bubble sort

## Correct Option : <br> A

Question No: 93 Assume that $\mathrm{A}[1 . . \mathrm{i}-1]$ have already been sorted. Insert $\mathrm{A}[\mathrm{i}]$ into its proper position in this sub array. Create this position by shifting all larger elements to the right. $\qquad$
A. Selection sort
B. Bubble sort
C. Merge sort
D. Insertion sort

## Correct Option : D

Question No: 94 In the worst case time $\qquad$ run in $\Theta(\mathrm{n} 2)$ $\qquad$
A. Bubble sort
B. Selection sort
C. Insertion sort
D. All of the above

## Correct Option : D

Question No: 95 A $\qquad$ is a left-complete binary tree that conforms to the heap order. $\qquad$
A. BST
B. AVL Tree
C. Perfect tree
D. Heap

## Correct Option : D

Question No: 96 The heap order property stated that in a $\qquad$ , for every node $X$, the key in the parent is smaller than or equal to the key in X. $\qquad$
A. (max) heap
B. (min) heap

## Correct Option : B

Question No: 97 In a $\qquad$ heap, the parent has a key larger than or equal both of its children
A. (max) heap
B. $(\mathrm{min})$ heap

Correct Option :
A
Question No: 98 Thus the smallest key is in the root in a $\qquad$ ; in the $\qquad$ the largest is in the root. $\qquad$
A. max heap, min heap
B. min heap , max heap
C. max heap , max heap
D. min heap , min heap

## Correct Option : <br> B

Question No: 99 The number of nodes in a complete binary tree of height $h$ is $\qquad$ $n=2^{0}+2^{1}+2^{2}+\cdots+2^{h}=\sum_{i=0}^{h} 2^{i}=2^{h+1}-1$
A. true
B. false

## Correct Option : A

Question No: $\mathbf{1 0 0} \mathrm{h}$ in terms of n is $\qquad$
$h=(\log (n+1))-1 \approx \log n \in \Theta(\log n)$
A. true
B. false

## Correct Option : A

Question No: 101 One of the clever aspects of $\qquad$ is that they can be stored in arrays without using any pointers $\qquad$
A. lists
B. BST trees
C. heaps

## Correct Option : C

Question No: 102 We store the tree nodes in level-order traversal in heap sort $\qquad$
A. true
B. false

## Correct Option : A

Question No: 103 Access to nodes involves simple arithmetic operations:shown in below
left(i) : returns 2 i , index of left child of node i .
right(i) : returns $2 \mathrm{i}+1$, the right child.
parent(i) : returns $\mathrm{bi} / 2 \mathrm{c}$, the parent of i . $\qquad$
A. false
B. true

## Correct Option :

B
Question No: 104 The root is at position 1 of the array.
A. true
B. false

## Correct Option : A

Question No: 105 There is one principal operation for maintaining the heap property.
A. Heapify Procedure
B. none

## Correct Option : A

Question No: 106 It is called Heapify. (In other books it is sometimes called sifting down.)
A. true
B. false

## Correct Option : A

## MCQz (Set-2) Lecture wise MCQs

Correct Choice : 4 From Lectuer \# 1
3 - $\qquad$ is a graphical representation of an algorithm

1. Segma Notation
2. Thita Notation
3. Flowchart
4. Asymptotic notation

Correct Choice : 3 From Lectuer \# 2
4 - What will be the total number of max comparisons if we run brute-force maxima algorithm with n elements?

1. $n^{\wedge} 2$
2. $\mathrm{n}^{\wedge} \mathrm{n} / 2$
3. n
4. $n^{\wedge} 8$

Correct Choice : 1 From Lectuer \# 3
5 - function is given like $4 n^{\wedge} 4+5 n^{\wedge} 3+n$ what is the run time of this

## 1. theata( $\left.n^{\wedge} 4\right)$

2. theata( $\mathrm{n}^{\wedge} 3$ )
3. theata $\left(4 n^{\wedge} 4+5 n^{\wedge} 3\right)$
4. theata $\left(4 n^{\wedge} 4+5 n^{\wedge} 3\right)$

Correct Choice : 1 From Lectuer \# 4
6 - Consider the
following code: For $\mathrm{j}=1$; j
7 - Execution of the following code
fragment int $\mathrm{i}=\mathrm{N}$; while ( $\mathrm{i}>0$ )
2
$\{$ int Sum $=0$; int
$j$; for $(j=0 ; j$
Sum++; cout
8 - Let us say we have an algorithm that carries out N2 operations for an input of size
N. Let us say that a computer takes 1 microsecond ( $1 / 1000000$ second) to carry out one operation. How long does the algorithm run for an input of size 3000?

1. 90 seconds
2. 9 seconds
3. 0.9 seconds
4. 0.09 seconds

Correct Choice : 2 From Lectuer \# 4
9 - The appropriate big thita classification of the given function. $f(n)=4 n 2+97 n+1000$ is

1. ? (n)
2. $\mathrm{O}\left(2^{\wedge} \mathrm{n}\right)$
3. $O\left(n^{\wedge} 2\right)$
4. O(n^2logn)

Correct Choice : 3 From Lectuer \# 4
10 - The appropriate big ? classification of the given function. $f(n)=4 n 2+97 n+1000$ is

1. ?(n)
2. $\mathrm{O}\left(2^{\wedge} \mathrm{n}\right)$
3. $O\left(n^{\wedge} 2\right)$
4. O( $\left.n^{\wedge} 2 \log n\right)$

Correct Choice : 3 From Lectuer \# 4
11 - Which sorting algorithm is faster

1. O ( $\mathrm{n} \log \mathrm{n}$ )
2. $\mathrm{On}^{\wedge} 2$
3. $0(n+k)$
4. $\mathrm{On}^{\wedge} 3$

Correct Choice : 3 From Lectuer \# 5
12 - If algorithm A has running time $7 n^{\wedge} 2+2 n+3$ and algorithm $B$ has running time $2 \mathrm{n}^{\wedge} 2$,then

## 1. Both have same asymptotic time complexity

2. A is asymptotically greater
3. B is asymptotically greater
4. None of others

Correct Choice : 1 From Lectuer \# 6
14 - What is the solution to the recurrence $T(n)=T(n / 2)+n$.

1. $O$ (logn)
2. O(n)
3. O(nlogn)
4. $O\left(n^{\wedge} 2\right)$

Correct Choice : 1 From Lectuer \# 8
15 - How much time merge sort takes for an array of numbers?

1. $\left(\mathrm{n}^{\wedge} 2\right)$
2. $\mathbf{T}(\mathrm{n})$
3. $\mathrm{T}(\log \mathrm{n})$
4. $T(n \log n)$

Correct Choice : 2 From Lectuer \# 8
17 - Consider the following Algorithm:
Factorial ( n ) \{ if ( $\mathrm{n}=1$ )
return 1 else return ( n *
Factorial(n-1))
\} Recurrence for the following algorithm is:

1. $T(n)=T(n-1)+1$
2. $\mathrm{T}(\mathrm{n})=\mathrm{nT}(\mathrm{n}-1)+1$
3. $T(n)=T(n-1)+n$
4. $\mathbf{T}(\mathbf{n})=\mathbf{T}(\mathbf{n}(\mathbf{n}-1))+\mathbf{1}$

Correct Choice : 4 From Lectuer \# 9
18 - For the Sieve Technique we take time

## 1. $\mathbf{T}(\mathbf{n k})$.

2. T(n / 3) 4
3. $\mathrm{n}^{\wedge} 2$
4. n/3

Correct Choice : 1 From Lectuer \# 10
20 - Sieve Technique applies to problems where we are interested in finding a single item from a larger set of

1. n items
2. phases
3. pointers
4. constant

Correct Choice : 1 From Lectuer \# 10
22 - In Sieve Technique we do not know which item is of interest

1. FALSE
2. TRUE
3. 
4. 

Correct Choice : 2 From Lectuer \# 10
23 - For the sieve technique we solve the problem,

1. recursively
2. mathematically
3. accurately
4. precisely

Correct Choice : 1 From Lectuer \# 10

24 - For the Sieve Technique we take time

1. T(nk)
2. T(n / 3)
3. $\mathrm{n}^{\wedge} 2$
4. n/3

Correct Choice : 1 From Lectuer \# 10
25 - How many elements do we eliminate in each time for the Analysis of Selection algorithm?

1. n / 2 elements
2. (n / 2) +n elements
3. n / 4 elements
4. $n$ elements

5
Correct Choice : 4 From Lectuer \# 10
26 - Sieve Technique applies to problems where we are interested in finding a single item from a larger set of

1. n items
2. phases
3. pointers
4. constant

Correct Choice : 1 From Lectuer \# 10
27 - Sieve Technique can be applied to selection problem?

1. TRUE
2. FALSE
3. 
4. 

Correct Choice : 1 From Lectuer \# 10
28 - The analysis of Selection algorithm shows the total running time is indeed $\qquad$ in
n,

1. arithmetic
2. geometric
3. linear
4. orthogonal

Correct Choice : 3 From Lectuer \# 10
29 - The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,

1. divide-and-conquer
2. decrease and conquer
3. greedy nature
4. 2-dimension Maxima

Correct Choice : 1 From Lectuer \# 10
30 - The sieve technique works in $\qquad$

1. phases
2. numbers
3. integers
4. routines

Correct Choice : 1 From Lectuer \# 10
31 - The sieve technique works in $\qquad$ as follows

## 1. phases 6

2. numbers
3. integers
4. routines

Correct Choice : 1 From Lectuer \# 10
32-A (an) $\qquad$ is a left-complete binary tree that conforms to the heap order

1. heap
2. binary tree
3. binary search tree
4. array

Correct Choice : 1 From Lectuer \# 11
34 - For the heap sort, access to nodes involves simple $\qquad$ operations.

## 1. arithmetic

2. binary
3. algebraic
4. logarithmic

Correct Choice : 1 From Lectuer \# 11
37 - We do sorting to,

1. keep elements in random positions
2. keep the algorithm run in linear order
3. keep the algorithm run in ( $\log \mathrm{n}$ ) order
4. keep elements in increasing or decreasing
order Correct Choice : 1 From Lectuer \# 11
42 - For the heap sort we store the tree nodes in

## 1. level-order traversal

2. in-order traversal
3. pre-order traversal
4. post-order traversal

Correct Choice : 1 From Lectuer \# 11
7
44 - In the analysis of Selection algorithm, we make a number of passes, in fact it could be as
many as,

1. T(n)
2. $\mathrm{T}(\mathrm{n} / 2)$
3. $\log n$
4. n / $2+n / 4$

Correct Choice : 3 From Lectuer \# 11
45 - In the analysis of Selection algorithm, we make a number of passes, in fact it could be as
many as,

1. T(n)
2. T(n / 2)
3. $\log n$
4. n / $2+n / 4$

Correct Choice : 3 From Lectuer \# 11
46 - In which order we can sort?

1. increasing order only
2. decreasing order only
3. increasing order or decreasing order
4. both at the same time

Correct Choice : 3 From Lectuer \# 11
47 - One of the clever aspects of heaps is that they can be stored in arrays without using any $\qquad$ _.

## 1. pointers

2. constants
3. variables
4. functions

Correct Choice : 1 From Lectuer \# 11
49 - Slow sorting algorithms run in,

1. $O\left(n^{\wedge} 2\right)$
2. O(n)
3. $\mathrm{O}(\log \mathrm{n})$
4. $O(n \log n)$

Correct Choice : 1 From Lectuer \# 11
50 - What is the total time to heapify?

## 1. ? $(\log n)$

2. ?(n $\log \mathrm{n})$
3. ? ( $\left.\mathrm{n}^{\wedge} 2 \log \mathrm{n}\right)$
4. ? $\left(\log ^{\wedge} 2 n\right)$

Correct Choice : 1 From Lectuer \# 12
-When we call heapify then at each level the comparison performed takes time It will take O (1)

1. Time will vary according to the nature of input data
2. It can not be predicted
3. It will take O (log n)
4. None of the Given

Correct Choice : 3 From Lectuer \# 12
53 - After partitioning array in Quick sort, pivot is placed in a position such that

1. Values smaller than pivot are on left and larger than pivot are on right
2. Values larger than pivot are on left and smaller than pivot are on right
3. Pivot is the first element of array
4. Pivot is the last element of array

Correct Choice : 2 From Lectuer \# 13
54 - The running time of quick sort depends heavily on the selection of

1. No of inputs
2. Arrangement of elements in array
3. Size o elements

## 4. Pivot element

Correct Choice : 4 From Lectuer \# 13
55 - In Quick Sort Constants hidden in T(n $\log \mathrm{n})$ are

1. Large
2. Medium
3. Small
4. Not Known

Correct Choice : 3 From Lectuer \# 14
9
56 - In Quick Sort Constants hidden in T(n $\log \mathrm{n})$ are 1. Large
2. Medium

## 3. Small

4. Not Known

Correct Choice : 3 From Lectuer \# 14
57 - Is it possible to sort without making comparisons?

1. Yes
2. No
3. 
4. 

Correct Choice : 1 From Lectuer \# 15
58 - Merge sort is stable sort, but not an in-place algorithm

## 1. TRUE

2. FALSE
3. 
4. 

Correct Choice : 1 From Lectuer \# 15
59 - In counting sort, once we know the ranks, we simply $\qquad$ numbers to their final positions in an output array.

1. Delete
2. Copy
3. Mark
4. arrange

Correct Choice : 2 From Lectuer \# 15
60 - An in place sorting algorithm is one that uses $\qquad$ arrays for storage

1. Two dimensional arrays
2. More than one array
3. No Additional Array
4. None of the above

Correct Choice : 3 From Lectuer \# 15
61 - Continuation/counting sort is suitable to sort the elements in range 1 to k

1. K is Large
2. K is not known
3. K may be small or large

## 4. $K$ is small

10
Correct Choice : 4 From Lectuer \# 15
62 - In stable sorting algorithm.

## 1. If duplicate elements remain in the same relative position after sorting

2. One array is used
3. More than one arrays are required
4. Duplicating elements not handled

Correct Choice : 1 From Lectuer \# 15
63 - One example of in place but not stable algorithm is

1. Merger Sort
2. Quick Sort
3. Continuation Sort
4. Bubble Sort

Correct Choice : 2 From Lectuer \# 15
64 - One example of in place but not stable algorithm is

1. Merger Sort
2. Quick Sort
3. Continuation Sort
4. Bubble Sort

Correct Choice : 2 From Lectuer \# 15
65 - One of the clever aspects of heaps is that they can be stored in arrays without using any $\qquad$

1. pointers
2. constants
3. variables
4. functions

Correct Choice : 1
66 - Quick sort is

1. Stable \& in place
2. Not stable but in place
3. Stable but not in place
4. Some time stable $\&$ some times in place

Correct Choice : 3 From Lectuer \# 15
67 - Quick sort is

1. Stable \& in place
2. Not stable but in place
3. Stable but not in place
4. Some time stable $\&$ some times in place

Correct Choice : 2 From Lectuer \# 15
68 - Which may be a stable sort?

1. Merger
2. Insertion
3. Both above
4. None of the above

Correct Choice : 3 From Lectuer \# 15
69 - Which of the following sorting algorithms is stable?
(i) Merge sort,
(ii) Quick sort,
(iii) Heap sort,
(iv) Counting Sort.

1. Only i
2. Only ii
3. Both i and ii
4. Both iii and iv

Correct Choice : 1 From Lectuer \# 15
70 - Which of the following sorting algorithms is stable?
(i) Merge sort,
(ii) Quick sort,
(iii) Heap sort,
(iv) Counting Sort.

## 1. Only i

2. Only ii
3. Both i and ii
4. Both iii and iv

Correct Choice : 1 From Lectuer \# 15
71 - Mergesort is a stable algorithm but not an in-place algorithm.

## 1. TRUE

2. FALSE
3. 
4. 

Correct Choice : 1 From Lectuer \# 16
72 - Memorization is?

1. To store previous results for future use
2. To avoid this unnecessary repetitions by writing down the results of recursive 12
calls and looking them up again if we need them later
3. To make the process accurate
4. None of the above

Correct Choice : 2 From Lectuer \# 16
73 - Dynamic programming algorithms need to store the results of intermediate sub-problems.

1. TRUE
2. FALSE
3. 
4. 

Correct Choice : 1 From Lectuer \# 17
74 - Dynamic programming uses a top-down approach.

1. TRUE
2. FALSE
3. 
4. 

Correct Choice : 2 From Lectuer \# 17
75 - The edit distance between FOOD and MONEY is

1. At most four
2. At least four
3. Exact four
4. Wrong

Correct Choice : 1 From Lectuer \# 17
76 - The edit distance between FOOD and MONEY is

1. At most four
2. At least four
3. Exact four
4. Wrong

Correct Choice : 1 From Lectuer \# 17
77 - If there are $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$ entries in edit distance matrix then the total running time is O (1)
$0\left(n^{\wedge}\right)$
O (n)
O ( $\mathrm{n} \log \mathrm{n}$ )
Correct Choice : 2 From Lectuer \# 18
13
79 - A p x q matrix A can be multiplied with a q x r matrix B. The result will be a p x r matrix
C. There are ( $\mathrm{p} . \mathrm{r}$ ) total entries in C and each takes $\qquad$ to compute.

1. $O$ (q)
2. O (1)
3. O ( $\left.\mathrm{n}^{\wedge} 2\right)$
4. $O\left(n^{\wedge} 3\right)$

Correct Choice : 1 From Lectuer \# 19
80 - For Chain Matrix Multiplication we can not use divide and conquer
approach because,

## 1. We do not know the optimum $k$

2. We use divide and conquer for sorting only
3. We can easily perform it in linear time
4. Size of data is not given

Correct Choice : 1 From Lectuer \# 19
82 - A p x q matrix A can be multiplied with a $q \times r$ matrix $B$. The result will be a $p \mathrm{x}$ $r$ matrix
C. There are ( $\mathrm{p} . \mathrm{r}$ ) total entries in C and each takes $\qquad$ to compute.

1. $O$ (q)
2. O (1)
3. O ( $\left.\mathrm{n}^{\wedge} 2\right)$
4. O ( $\left.\mathrm{n}^{\wedge} 3\right)$

Correct Choice : 1 From Lectuer \# 19
83 - The Knapsack problem belongs to the domain of $\qquad$ problems.

1. Optimization
2. NP Complete
3. Linear Solution
4. Sorting

Correct Choice : 1 From Lectuer \# 21
84 - Suppose we have three items as shown in the following table, and suppose the capacity of the knapsack is 50 i.e. $\mathrm{W}=50$. Item Value Weight 160102100
20312030 The optimal solution is to pick

1. Items 1 and 2
2. Items 1 and 3
3. Items 2 and 3

## 4. None of these

14
Correct Choice : 4 From Lectuer \# 22
Correct Choice : 3 From Lectuer \# 21
85 - Huffman algorithm uses a greedy approach to generate a postfix code T that minimizes the expected length $\mathrm{B}(\mathrm{T})$ of the encoded string.

## 1. TRUE

2. FALSE
3. 
4. 

Correct Choice : 1 From Lectuer \# 22
86 - The codeword assigned to characters by the Huffman algorithm have the property that no codeword is the postfix of any other.

1. TRUE

## 2. FALSE

3. 
4. 

Correct Choice : 2 From Lectuer \# 22
87 - The greedy part of the Huffman encoding algorithm is to first find two nodes with larger frequency.

1. TRUE
2. FALSE
3. 
4. 

Correct Choice : 2 From Lectuer \# 22
88 - An optimization problem is one in which you want to find,

1. Not a solution
2. An algorithm
3. Good solution
4. The best solution

Correct Choice : 4 From Lectuer \# 22


## MCQz (Set-3)

Q What type of instructions Random access machine can execute?
Choose best answer.
Geometric and arithmetic
Algebraic and logic

## Arithmetic and logic

Parallel and recursive
Q Due to left complete nature of binary tree, the heap can be stored in

- Arrays
- Structures
- Link Lis
- Stack

Q What type of instructions Random Access Machine (RAM) can execute? Choose best answer

Algebraic and logic
Geometric and arithmetic

## Arithmetic and logic

Parallel and recursive
Q For Chain Matrix Multiplication we can not use divide and conquer approach because,

We do not know the optimum k We use divide and conquer for sorting only

We can easily perform it in linear time
Size of data is not given
Q knapsack problem is called a " $0-1$ " problem, because

## Each item must be entirely accepted or rejected

## ??????????????????????

???????????????????????
Q word Algorithm comes from the name of the muslim author Abu Ja'far Mohammad ibn Musa al-Khowarizmi.
Q al-Khwarizmi's work was written in a book titled al Kitab al-mukhatasar fi hisab aljabr wa'l-muqabalah

Q What is the total time to heapify?

## - $\mathbf{O}(\log n)$

- O(n $\log \mathrm{n})$
- O(n2 logn)
- O(log2n)



## MCQz (Set-4)

1. For the Sieve Technique we take time
$>$ T(nk).
>T(n /
3) $>n^{\wedge} 2$
$>n / 3$
2. Sieve Technique applies to problems where we are interested in finding a single item from a larger set of $\qquad$
Select correct option:

## $>$ n items

$>$ phases
>pointers
>constant
3. $\qquad$ graphical representation of algorithm.
> asymptotic
>. flowchart
4. who invented the quick sort
5. function is given like $4 n^{\wedge} 4+5 n^{\wedge} 3+n$ what is the run time of this
$>$ theata( $n^{\wedge} 4$ )
$>$ theata $\left(\mathrm{n}^{\wedge} 3\right)$
$>$ theata $\left(4 n^{\wedge} 4+5 n^{\wedge} 3\right)$
$>$ theata $\left(4 n^{\wedge} 4+5 n^{\wedge} 3\right)$
6. main elements to a divide-and-conquer

## Divide---->conquer--------->combine

7. $\mathrm{T}(\mathrm{n})=\{4 \quad$ if $\mathrm{n}=1$, otherwise $T(n / 5)+3 n \wedge 2$ what is the answer if $n=5$

## answer is 79

8. Mergesort is a stable algorithm but not an in-place algorithm.

## >True

$>$ false
9. Counting sort the numbers to be sorted are in the range 1 to k where k is small.

[^0]
## MCQz (Set-5)

Question \# 1 of 10 ( Start time: 06:18:58 PM ) Total Marks:
1 We do sorting to,
Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in (log n) order
keep elements in increasing or decreasing order
Question \# 2 of 10 ( Start time: 06:19:38 PM ) Total Marks: 1
Heaps can be stored in arrays without using any pointers;
this is due to the $\qquad$ nature of the binary tree, Select correct option:

## left-complete right-

complete
tree nodes
tree leaves
Question \# 3 of 10 ( Start time: 06:20:18 PM ) Total Marks: 1
Sieve Technique can be applied to selection problem?
Select correct option:

## True

False

Question \# 4 of 10 ( Start time: 06:21:10 PM ) Total Marks:
1 A heap is a left-complete binary tree that conforms to the
Select correct option:
increasing order only
decreasing order only
heap order
(log n) order
Question \# 5 of 10 ( Start time: 06:21:39 PM ) Total Marks: 1
A (an) is a left-complete binary tree that conforms
to the heap order
Select correct option: heap
binary tree binary search tree array

Question \# 6 of 10 ( Start time: 06:22:04 PM ) Total Marks: 1
Divide-and-conquer as breaking the problem into a small number of Select correct option:
pivot
Sieve

## smaller sub problems

## Selection

Question \# 7 of 10 ( Start time: 06:22:40 PM ) Total Marks: 1 In Sieve Technique we do not know which item is of interest Select correct option:

## True

False
Question \# 8 of 10 ( Start time: 06:23:26 PM ) Total Marks: 1
The recurrence relation of Tower of Hanoi is given below T(n)=\{1 if $n=1$ and $2 T(n-1)$ if $n$ $>1$ In order to move a tower of 5 rings from one peg to another, how many ring moves are required?
Select correct
option: 16
10

## 32

31
Question \# 9 of 10 ( Start time: 06:24:44 PM ) Total Marks: 1 In
the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent
$\qquad$ series in the
analysis, Select correct option:
linear
arithmetic
geometric
exponent
Question \# 10 of 10 ( Start time: 06:25:43 PM ) Total Marks: 1
For the heap sort, access to nodes involves simple $\qquad$ operations. Select correct option:

## arithmetic

binary
algebraic
logarithmic

## MCQz (Set-6)

1. For the sieve technique we solve the problem, recursively
hathematically
recisely
ccurately
2. We do sorting to, eep elements in random positions eep the algorithm run in linear order eep the algorithm run in ( $\log \mathrm{n}$ ) order keep elements in increasing or decreasing order
3. The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,

## divide-and-conquer <br> ecrease and conquer <br> reedy nature <br> -dimension Maxima

4. In Sieve Technique we do not know which item is of interest
```
True
alse
```

5. In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
```
        (n)
        (n / 2)
```

    \(\log n\)
        / \(2+n / 4\)
    6. Divide-and-conquer as breaking the problem into a small number
f pivot
ieve
smaller sub problems
election
7. A heap is a left-complete binary tree that conforms to the
$\qquad$
ncreasing order only
ecreasing order only
heap order
og n) order
8. Slow sorting algorithms run in,
$T\left(n^{\wedge} 2\right)$
(n)
( $\log \mathrm{n})$
9. One of the clever aspects of heaps is that they can be stored in arrays without using any $\qquad$ _.

## pointers

onstants
ariables
unctions
10. Sorting is one of the few problems where provable $\qquad$ bonds exits on how fast we can sort, pper

## MCQz (Set-7)

11. For the sieve technique we solve the roblem, mathematically recisely
12. Sieve Technique can be applied to selection problem?

## true

alse
13. How much time merge sort takes for an array of numbers?
$\mathrm{n}^{\wedge} 2$ )
(n)
( $\log n$ )
T( $\mathrm{n} \log \mathrm{n}$ )
14. For the Sieve Technique we take time

## T(nk) <br> (n / <br> $\mathrm{n}^{\wedge} 2$ <br> /3

15. Heaps can be stored in arrays without using any pointers; this is due to the nature of the binary

## tree, left-complete

ight-complete
ree nodes
ree leaves
16. How many elements do we eliminate in each time for the Analysis of

Selection algorithm?
/ 2 elements
(n / 2) + n elements
/ 4 elements
n elements
17. We do sorting to, eep elements in random positions
eep the algorithm run in linear order
eep the algorithm run in ( $\log n$ ) order
keep elements in increasing or decreasing order
18. In which order we can
ort? increasing order only ecreasing order only
increasing order or decreasing rder both at the same time
19. A heap is a left-complete binary tree that conforms to the $\qquad$ ncreasing order only ecreasing order only
heap order
og n) order
20. In the analysis of Selection algorithm, we make a number of passes,
in fact it could be as many as,

```
(n)
(n / 2)
```

$\log n$
/ $2+n / 4$


## MCQz (Set-8)

21. A heap is a left-complete binary tree that conforms to the $\qquad$ ncreasing order only ecreasing order only
heap order
og n) order
22. How much time merge sort takes for an array of numbers?
$\rightarrow\left(n^{\wedge} 2\right)$
(n)
$T(\log n)$
23. One of the clever aspects of heaps is that they can be stored in arrays without using any
```
pointers
onstants
ariables
unctions
24. \(n\) the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent
``` \(\qquad\)
```

series in the
nalysis, linear
rithmetic
geometric
xponent

```
25. Sieve Technique applies to problems where we are interested in finding a single item from a larger set of

\section*{n items}
hases
ointers
onstant
26. A (an) \(\qquad\) is a left-complete binary tree that conforms to the heap order
heap
inary tree
inary search
ree array
27. The sieve technique works in as
follows phases
umbers
ntegers
outines
28. For the sieve technique we solve the
problem, recursively
nathematically
recisely
ccurately
29. For the heap sort, access to nodes involves simple \(\qquad\) operations.

\section*{arithmetic \\ inary \\ lgebraic \\ ggarithmic}
30. The analysis of Selection algorithm shows the total running time is indeed \(\qquad\) in \(\mathrm{n}, \backslash\)
rithmetic eometric
linear
rthogonal

\section*{MCQz (Set-9)}

Question \# 1 of 10 ( Start time: 07:39:23 AM ) Total Marks: 1
For the sieve technique we solve the problem,
Select correct option:
recursively
hathematically
recisely
ccurately
Question \# 2 of 10 ( Start time: 07:40:32 AM ) Total Marks: 1
For the heap sort, access to nodes involves simple \(\qquad\) operations.
Select correct option:

\section*{arithmetic}
inary
lgebraic
pgarithmic
Question \# 3 of 10 ( Start time: 07:41:58 AM ) Total Marks: 1
We do sorting to,
Select correct option:

\section*{eep elements in random positions \\ eep the algorithm run in linear order \\ eep the algorithm run in \((\log n)\) order \\ keep elements in increasing or decreasing order}

Question \# 4 of 10 ( Start time: 07:42:18 AM ) Total Marks: 1
One of the clever aspects of heaps is that they can be stored in arrays without using any \(\qquad\) .
Select correct
onstants
ariables
unctions

Question \# 5 of 10 ( Start time: 07:42:55 AM ) Total Marks: 1
A (an) \(\qquad\) is a left-complete binary tree that conforms to the heap order
Select correct option: heap
inary tree binary
earch tree array

Question \# 6 of 10 ( Start time: 07:43:24 AM ) Total Marks: 1
The analysis of Selection algorithm shows the total running time is indeed
\(\qquad\) in n ,
Select correct
ption: arithmetic eometric
linear
rthogonal
Question \# 7 of 10 ( Start time: 07:44:11 AM ) Total Marks: 1
Sieve Technique applies to problems where we are interested in finding a single item from a larger set of \(\qquad\)
Select correct

\section*{option: \(\mathbf{n}\) items}
hases
ointers
onstant

Question \# 8 of 10 ( Start time: 07:45:06 AM ) Total Marks: 1 Divide-and-conquer as breaking the problem into a small number of
Select correct
ption: pivot
ieve
smaller sub problems
election
Question \# 9 of 10 ( Start time: 07:45:36 AM ) Total Marks: 1
In Sieve Technique we do not know which item is of interest
Select correct option:

\section*{True \\ alse}

Question \# 10 of 10 ( Start time: 07:46:17 AM ) Total Marks: 1
How much time merge sort takes for an array of numbers?
Select correct option:
```

(n^2)
(n)
( log n)

```

\section*{\(T(n \log n)\)}


\section*{MCQz (Set-10)}

Question \# 1 of 10 ( Start time: 07:48:31 AM ) Total Marks:
1 For the heap sort we store the tree nodes in
Select correct option:
level-order traversal
h-order traversal
re-order traversal
ost-order traversal
Question \# 2 of 10 ( Start time: 07:48:53 AM ) Total Marks: 1
One of the clever aspects of heaps is that they can be stored in arrays without using any \(\qquad\) .
Select correct
option: pointers
onstants
ariables
unctions
Question \# 3 of 10 ( Start time: 07:49:03 AM ) Total Marks: 1
Sorting is one of the few problems where provable \(\qquad\) bonds exits on how fast we can sort,
Select correct
ption: upper
```

lower
verage
pg n

```

Question \# 4 of 10 ( Start time: 07:49:59 AM ) Total Marks: 1
A (an) \(\qquad\) is a left-complete binary tree that conforms to the
heap order
Select correct option: heap
inary tree binary
earch tree array

Question \# 5 of 10 ( Start time: 07:50:09 AM ) Total Marks: 1
Sieve Technique applies to problems where we are interested in finding a single item from a larger set of \(\qquad\)
Select correct
option: \(\mathbf{n}\) items
hases
ointers

Question \# 6 of 10 ( Start time: 07:50:20 AM ) Total Marks: 1
How much time merge sort takes for an array of numbers?
Select correct option:
```

(n^2)
(n)
log n)
T(n log n)

```

Question \# 7 of 10 ( Start time: 07:50:36 AM ) Total Marks: 1 A heap is a left-complete binary tree that conforms to the \(\qquad\)

Select correct option:
ncreasing order only ecreasing order only
heap order
og n) order
Question \# 8 of 10 ( Start time: 07:51:04 AM ) Total Marks: 1
In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
Select correct option:
( n )
(n / 2)
\(\log n\)
/ \(2+n / 4\)
Question \# 9 of 10 ( Start time: 07:51:41 AM ) Total Marks: 1
The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,
Select correct option:
divide-and-conquer
ecrease and conquer
reedy nature
-dimension Maxima

Question \# 10 of 10 ( Start time: 07:52:17 AM ) Total Marks: 1
The analysis of Selection algorithm shows the total running time is indeed
\(\qquad\) in n ,
Select correct
ption: arithmetic
eometric

\section*{linear}
rthogonal

\section*{MCQz (Set-11)}

Question \# 1 of 10 ( Start time: 07:53:11 AM ) Total Marks:
1 The sieve technique works in \(\qquad\) as follows
Select correct
```

option: phases
umbers
ntegers
outines

```

Question \# 2 of 10 ( Start time: 07:53:53 AM ) Total Marks: 1
Sorting is one of the few problems where provable \(\qquad\) bonds exits on how fast we can sort,
Select correct
ption: upper
```

lower
verage
gg}

```

Question \# 3 of 10 ( Start time: 07:54:01 AM ) Total Marks: 1
In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
Select correct option:
```

(n)
(n / 2)

```
```

log}
| / 2 + n / 4

```

Question \# 4 of 10 ( Start time: 07:54:16 AM ) Total Marks: 1
For the Sieve Technique we take time
Select correct option:
```

T(nk)
(n /
) $n^{\wedge} 2$
/3

```

Question \# 5 of 10 ( Start time: 07:55:31 AM ) Total Marks: 1
A (an) \(\qquad\) is a left-complete binary tree that conforms to the heap order
Select correct
```

option: heap

```
inary tree binary
earch tree
rray

Question \# 6 of 10 ( Start time: 07:55:40 AM ) Total Marks: 1

For the heap sort we store the tree nodes in Select correct option:

\section*{level-order traversal}

1-order traversal prerder traversal postrder traversal

Question \# 7 of 10 ( Start time: 07:55:51 AM ) Total Marks: 1
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \(\qquad\) series in the analysis,
Select correct ption: linear
rithmetic
geometric xponent

Question \# 8 of 10 ( Start time: 07:56:30 AM ) Total Marks: 1
One of the clever aspects of heaps is that they can be stored in arrays without using any \(\qquad\) .
Select correct
option: pointers
onstants
ariables
unctions

Question \# 9 of 10 ( Start time: 07:56:41 AM ) Total Marks: 1
Analysis of Selection algorithm ends up with,
Select correct option:
T(n)
\((1 / 1+n)\)
\((n / 2)\)
\(\square\)
\((n / 2)+n)\)

Question \# 10 of 10 ( Start time: 07:58:12 AM ) Total Marks: 1
The analysis of Selection algorithm shows the total running time is indeed
\(\qquad\) in n ,
Select correct
ption: arithmetic
eometric

\section*{linear}
rthogonal


\section*{MCQz (Set-12)}

Question No: 1 (Marks: 1 ) - Please choose one
An optimization problem is one in which you want to find,
Not a solution

An algorithm
Good solution
The best solution

\section*{Below Highlighted is Not For Midterm}

Question No: 2 (Marks: 1 ) - Please choose one
Although it requires more complicated data structures, Prim's algorithm for a minimum spanning tree is better than Kruskal's when the graph has a large number of vertices.
- True
- False

\section*{Question No: 3 (Marks: 1 ) - Please choose one}

If a problem is in NP, it must also be in P.
- True
- False
- unknown

Question No: 4 (Marks: 1 ) - Please choose one
What is generally true of Adjacency List and Adjacency
Matrix representations of graphs?
Lists require less space than matrices but take longer to find the weight of an edge ( \(\mathrm{v} 1, \mathrm{v} 2\) )
- Lists require less space than matrices and they are faster to find the weight of an edge (v1,v2)
- Lists require more space than matrices and they take longer to find the weight of an edge ( \(\mathrm{v} 1, \mathrm{v} 2\) )
- Lists require more space than matrices but are faster to find the weight of an edge (v1,v2)

\section*{Question No: 5 (Marks: 1 ) - Please choose one}

If a graph has \(v\) vertices and e edges then to obtain a spanning tree we have to delete
- v edges.
\(-\mathrm{v}-\mathrm{e}+5\) edges
- \(\mathrm{v}+\mathrm{e}\) edges.
- None of these

\section*{Question No: 6 (Marks: 1 ) - Please choose one}

Maximum number of vertices in a Directed Graph may be |V2|
- True
- False

Question No: 7 (Marks: 1 ) - Please choose one
The Huffman algorithm finds a (n) \(\qquad\) solution.
- Optimal
- Non-optimal
- Exponential
- Polynomial

Question No: 8 (Marks: 1 ) - Please choose one

The Huffman algorithm finds an exponential solution
- True
- False

Question No: 9 ( Marks: 1 ) - Please choose one
The Huffman algorithm finds a polynomial solution
- True
- False

Question No: 10 (Marks: 1 ) - Please choose one
The greedy part of the Huffman encoding algorithm is to first find two nodes with larger frequency.
- True
- False

\section*{Question No: 11 ( Marks: 1 ) - Please choose one}

The codeword assigned to characters by the Huffman algorithm have the property that no codeword is the postfix of any other.
- True
- False

\section*{Question No: 12 ( Marks: 1 ) - Please choose one}

Huffman algorithm uses a greedy approach to generate a postfix code T that minimizes the expected length \(\mathrm{B}(\mathrm{T})\) of the encoded string.
- True
- False

\section*{Question No: 13 (Marks: 1) - Please choose one}

Shortest path problems can be solved efficiently by modeling the road map as a graph.
- True
- False

\section*{Question No: 14 ( Marks: 1 ) - Please choose one}

Dijkestra's single source shortest path algorithm works if all edges weights are non-negative and there are negative cost cycles.
- True
- False

\section*{Question No: 15 (Marks: 1 ) - Please choose one}

Bellman-Ford allows negative weights edges and negative cost cycles.
- True
- False

\section*{Question No: 16 ( Marks: 1 ) - Please choose one}

The term "coloring" came form the original application which was in architectural design.
- True
- False

\section*{Question No: 17 ( Marks: 1 ) - Please choose one}

In the clique cover problem, for two vertices to be in the same group, they must be adjacent to each other.
- True
- False

Question No: 18 (Marks: 1 ) - Please choose one
Dijkstra's algorithm is operates by maintaining a subset of vertices
- True
- False

\section*{Question No: 19 (Marks: 1 ) - Please choose one}

The difference between Prim's algorithm and Dijkstra's algorithm is that
Dijkstra's algorithm uses a different key.
- True
- False

Question No: 20 (Marks: 1 ) - Please choose one
Consider the following adjacency list:
Which of the following graph(s) describe(s) the above adjacency list?

\section*{Question No: 21 (Marks: 1 ) - Please choose one}

We do sorting to,
- keep elements in random positions
- keep the algorithm run in linear order
- keep the algorithm run in (log n) order
- keep elements in increasing or decreasing order

Question No: 22 ( Marks: 1 ) - Please choose one
After partitioning array in Quick sort, pivot is placed in a position such that
- Values smaller than pivot are on left and larger than pivot are on right
- Values larger than pivot are on left and smaller than pivot are on right
- Pivot is the first element of array
- Pivot is the last element of array

Question No: 23 (Marks: 1 ) - Please choose one
Merge sort is stable sort, but not an in-place algorithm
- True
- False

\section*{Question No: 24 (Marks: 1 ) - Please choose one}

In counting sort, once we know the ranks, we simply \(\qquad\) numbers to their final positions in an output array.
- Delete
- copy
- Mark
- arrange

\section*{Question No: 25 (Marks: 1 ) - Please choose one}

Dynamic programming algorithms need to store the results of intermediate sub-problems.

True
- False

\section*{Question No: 26 (Marks: 1 ) - Please choose one}

A \(p \times q\) matrix A can be multiplied with a \(q \times r\) matrix \(B\). The result will be a \(p \times r\) matrix C. There are ( \(p . r\) ) total entries in \(C\) and each takes
\(\qquad\) to compute.
- O (q)
- O (1)
- \(\mathrm{O}(\mathrm{n} 2)\)
- O (n3)

\section*{MCQz (Set-13)}

Question \# 1 of 10 ( Start time: 10:02:41 PM ) Total Marks:
1 For the sieve technique we solve the problem,
Select correct
option: recursively
mathematically
precisely
accurately
The sieve technique works in \(\qquad\) as follows
Select correct

\section*{option: phases}
numbers
integers
routines
Slow sorting algorithms run in,
Select correct option:
\(\mathbf{T}\left(\mathbf{n}^{\wedge} 2\right)\)
T(n)
\(T(\log n)\)
A (an) \(\qquad\) is a left-complete binary tree that conforms to the heap order
Select correct
option: heap
binary tree binary
search tree array
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \(\qquad\) series in the analysis,
Select correct
option: linear
arithmetic

\section*{geometric}
exponent

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
Select correct
option: T(n)
T(n /
2) \(\log n\)
n / \(2+\mathrm{n} / 4\)
The sieve technique is a special case, where the number of sub problems
is just
Select correct
option: 5
many
1
few
In which order we can sort?
Select correct option:
increasing order only
decreasing order only

\section*{increasing order or decreasing}
order both at the same time
The recurrence relation of Tower of Hanoi is given below \(T(n)=\{1\) if \(\mathrm{n}=1\) and \(2 \mathrm{~T}(\mathrm{n}-1)\) if \(\mathrm{n}>1\) In order to move a tower of 5 rings from one peg to another, how many ring moves are required?
Select correct
option: 16
10
32
31
Analysis of Selection algorithm ends up with,
Select correct option:
T(n)
T(1/1+
n) \(T(n / 2)\)
\(\mathbf{T}(\mathbf{n} / 2)+\mathbf{n})\)
Last message received on 10/13 at 12:43 AM
Khanjee: We do sorting to,
Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in (log n) order

\section*{keep elements in increasing or decreasing order}

Khanjee: Divide-and-conquer as breaking the problem into a small number of
Select correct
option: pivot
Sieve

\section*{smaller sub problems}

Selection

The analysis of Selection algorithm shows the total running time is indeed
\(\qquad\) in n ,
Select correct
option: arithmetic
geometric

\section*{linear}
orthogonal
How many elements do we eliminate in each time for the Analysis of
Selection algorithm?
Select correct option:
n / 2 elements
(n / 2) + n elements
n / 4 elements
2 n elements
Sieve Technique can be applied to selection problem?
Select correct option:

\section*{True}

For the heap sort we store the tree nodes in
Select correct option:
level-order traversal
in-order traversal preorder traversal postorder traversal


\section*{MCQz (Set-14)}

Question \# 1 of 10 ( Start time: 10:49:41 PM ) Total Marks: 1
Which is true statement in the
following. Select correct option:
Kruskal algorithm is multiple source technique for finding MST.
Kruskal's algorithm is used to find minimum spanning tree of a graph, time complexity of this algorithm is \(\mathrm{O}(\mathrm{EV})\)

Both of above
Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best Tree edge) when the graph has relatively few edges.

Question \# 2 of 10 ( Start time: 10:50:58 PM ) Total Marks: 1
Which is true statement.
Select correct option:

\section*{Breadth first search is shortest path algorithm that works on un-weighted graphs}

Depth first search is shortest path algorithm that works on un-weighted graphs.
Both of above are true.
None of above are true.
Question \# 3 of 10 ( Start time: 10:52:18 PM ) Total Marks: 1

What is the time complexity to extract a vertex from the priority queue in
Prim's algorithm?
Select correct
option: \(\log (\mathrm{V})\)
V.V
E.E
\(\log (E)\)

Question \# 4 of 10 ( Start time: 10:53:03 PM ) Total Marks: 1
The relationship between number of back edges and number of cycles in DFS is,
Select correct option:
Both are equal
Back edges are half of cycles
Back edges are one quarter of cycles
There is no relationship between no. of edges and cycles
Question \# 5 of 10 ( Start time: 10:54:28 PM ) Total Marks: 1
Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best tree edge) when the graph has relatively few edges.
Select correct
option: True
False
Question \# 6 of 10 ( Start time: 10:55:28 PM ) Total Marks: 1
In digraph \(\mathrm{G}=(\mathrm{V}, \mathrm{E}) ; \mathrm{G}\) has cycle if and only if
Select correct option:
The DFS forest has forward edge.
The DFS forest has back edge
The DFS forest has both back and forward edge
BFS forest has forward edge
Question \# 7 of 10 ( Start time: 10:57:01 PM ) Total Marks: 1
There is relationship between number of back edges and number of cycles in
DFS Select correct option:
Both are equal.
Cycles are half of back edges.
Cycles are one fourth of back edges.
There is no relationship between back edges and number of cycles.
Question \# 8 of 10 ( Start time: 10:57:27 PM ) Total Marks: 1
A digraph is strongly connected under what condition? Select correct option:

A digraph is strongly connected if for every pair of vertices \(u, v e V, u\) can reach \(v\). A digraph is strongly connected if for every pair of vertices \(u, v e V, u\) can reach \(v\) and vice versa.

A digraph is strongly connected if for at least one pair of vertex \(u\), \(v e V, u\) can reach v and vice versa.

A digraph is strongly connected if at least one third pair of vertices \(u, v e V, u\) can reach v and vice versa.

Question \# 9 of 10 ( Start time: 10:58:50 PM ) Total Marks: 1
If you find yourself in maze the better traversel approach will be :
Select correct option:

\section*{BFS}

BFS and DFS both are valid
Level order
DFS
Question \# 10 of 10 (Start time: 11:00:12 PM ) Total Marks: 1
You have an adjacency list for G, what is the time complexity to compute Graph transpose \(\mathrm{G}^{\wedge} \mathrm{T}\) ?
Select correct option:
(V+E)
V.E

V
E


\section*{MCQz (Set-15)}

Question \# 1 of 10 ( Start time: 11:07:45 PM ) Total Marks: 1
You have an adjacency list for G, what is the time complexity to compute Graph transpose \(\mathrm{G}^{\wedge} \mathrm{T}\) ?
Select correct option:
( \(\mathrm{V}+\mathrm{E}\) )
V.E

V
E

Question \# 2 of 10 ( Start time: 11:08:28 PM ) Total Marks: 1
Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best tree edge) when the graph has relatively few edges.
Select correct option:

\section*{True}

False
Question \# 3 of 10 ( Start time: 11:09:01 PM ) Total Marks: 1
The relationship between number of back edges and number of cycles in DFS is, Select correct option:

\section*{Both are equal}

Back edges are half of cycles
Back edges are one quarter of cycles
There is no relationship between no. of edges and cycles

Question \# 4 of 10 ( Start time: 11:09:41 PM ) Total Marks: 1
What is the time complexity to extract a vertex from the priority queue in Prim's algorithm?
Select correct option:
\(\log (V)\)
V.V
E.E
\(\log (E)\)

Question \# 5 of 10 ( Start time: 11:10:14 PM ) Total Marks: 1
Which is true statement in the following.
Select correct option:
Kruskal algorithm is multiple source technique for finding MST.
Kruskal's algorithm is used to find minimum spanning tree of a graph, time complexity of this algorithm is \(\mathrm{O}(\mathrm{EV})\)

Both of above
Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best Tree edge) when the graph has relatively few edges.

\section*{MCQz (Set-16)}

Question \# 1 of 10 ( Start time: 06:18:58 PM ) Total Marks: 1
We do sorting to,
Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in \((\log n)\) order

\section*{keep elements in increasing or decreasing order}

Question \# 2 of 10 ( Start time: 06:19:38 PM ) Total Marks: 1
Heaps can be stored in arrays without using any pointers; this is due to the
\(\qquad\) nature of the binary

\section*{tree, Select correct option:}

\section*{left-complete}
right-complete
tree nodes
tree leaves
Question \# 3 of 10 ( Start time: 06:20:18 PM ) Total Marks: 1
Sieve Technique can be applied to selection problem?
Select correct option:

\section*{True}

False
Question \# 4 of 10 ( Start time: 06:21:10 PM ) Total Marks: 1
A heap is a left-complete binary tree that conforms to the \(\qquad\)
Select correct option:
increasing order only
decreasing order only
heap order
\((\log n)\) order

Question \# 5 of 10 ( Start time: 06:21:39 PM ) Total Marks: 1
A (an) \(\qquad\) is a left-complete binary tree that conforms to the heap order Select correct option:

\section*{heap}
binary tree
binary search
tree array
Question \# 6 of 10 ( Start time: 06:22:04 PM ) Total Marks: 1
Divide-and-conquer as breaking the problem into a small number of
Select correct
option: pivot
Sieve

\section*{smaller sub problems}

Selection
Question \# 7 of 10 ( Start time: 06:22:40 PM ) Total Marks: 1
In Sieve Technique we do not know which item is of interest Select correct option:

\section*{True}

False
Question \# 8 of 10 ( Start time: 06:23:26 PM ) Total Marks: 1
The recurrence relation of Tower of Hanoi is given below \(T(n)=\{1\) if \(n=1\) and \(2 T(n-1)\) if \(n>1\) In order to move a tower of 5 rings from one peg to another, how many ring moves are required?
Select correct
option: 16
10
32
31
Question \# 9 of 10 ( Start time: 06:24:44 PM ) Total Marks: 1
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \(\qquad\) series in the analysis,
Select correct
option: linear
arithmetic

\section*{geometric}
exponent
Question \# 10 of 10 ( Start time: 06:25:43 PM ) Total Marks: 1
For the heap sort, access to nodes involves simple \(\qquad\) operations.
Select correct
option: arithmetic
binary
algebraic
logarithmic

\section*{MCQz (Set-17)}

For the sieve technique we solve the problem,
Select correct option: recursively
mathematically
precisely
accurately
The sieve technique works in \(\qquad\) follows Select correct option:
Phases
numbers
integers
routines
Slow sorting algorithms run
in, Select correct option:

\section*{\(\mathbf{T}\left(\mathbf{n}^{\wedge} 2\right)\)}

T(n)
\(T(\log n)\)
A (an) \(\qquad\) is a left-complete binary tree that conforms to the heap order

\section*{Select correct}
option: heap
binary tree binary
search tree array
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \(\qquad\) series in the analysis,
Select correct
option: linear
arithmetic
geometric

\section*{exponent}

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
Select correct option:
T(n)
T(n /
2) \(\log n\)
\(\mathrm{n} / 2+\mathrm{n} / 4\)
The sieve technique is a special case, where the number of sub problems is just
Select correct option:
5
many
1
Few
In which order we can sort?
Select correct option:
increasing order only
decreasing order only

\section*{increasing order or decreasing}
order both at the same time
The recurrence relation of Tower of Hanoi is given below \(T(n)=\{1\) if \(n=1\) and \(2 T(n-1)\) if \(\mathrm{n}>1\) In order to move a tower of 5 rings from one peg to another, how many ring moves are required?

Select correct
option: 1610

\section*{32}

31
Analysis of Selection algorithm ends up with,
Select correct
option: T(n)
\(\mathrm{T}(1 / 1+\mathrm{n})\)
\(\mathrm{T}(\mathrm{n} / 2)\)
We do sorting to,
Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in \((\log n)\) order

\section*{keep elements in increasing or decreasing order}

Divide-and-conquer as breaking the problem into a small number of
Select correct
option: pivot
Sieve

\section*{smaller sub problems}

Selection
The analysis of Selection algorithm shows the total running time is indeed
\(\qquad\) in n ,
Select correct
option: arithmetic
geometric

\section*{linear}
orthogonal
How many elements do we eliminate in each time for the Analysis of Selection algorithm?
Select correct option:
\(n / 2\) elements
( \(\mathrm{n} / 2\) ) +n elements
n / 4 elements
2 n elements
Sieve Technique can be applied to selection problem?
Select correct option:

\section*{True}

False
For the heap sort we store the tree nodes in
Select correct option:

\section*{level-order traversal}
in-order traversal pre-
order traversal post-
order traversal

\section*{MCQz (Set-18)}

\section*{Question No: 1 ( Marks: 1 ) - Please choose one}

Random access machine or RAM is a/an
- Machine build by Al-Khwarizmi
- Mechanical machine
- Electronics machine
- Mathematical model

\section*{Question No: 2 (Marks: 1 ) - Please choose one}
 otation otation
Flowchart
- Asymptotic notation

Question No: 3 (Marks: 1 ) - Please choose one
A RAM is an idealized machine with \(\qquad\) random-access memory.
- 256MB
- 512MB
an infinitely large
- 100GB

\section*{Question No: 4 (Marks: 1 ) - Please choose one}

What type of instructions Random Access Machine (RAM) can execute? Choose best answer
- Algebraic and logic
- Geometric and arithmetic
- Arithmetic and logic
- Parallel and recursive

\section*{Question No: 5 (Marks: 1 ) - Please choose one}

What will be the total number of max comparisons if we run brute-force maxima algorithm with n elements?
- \(n^{2}\)
\({ }^{\boldsymbol{D}}{ }^{2}\)
n
n
- \(n\)
-
ns
Question No: 6 (Marks: 1 ) - Please choose one
What is the solution to the recurrence \(T(n)=T(n / 2)+n\).
- \(O(\log n)\)
\(-\mathrm{O}(\mathrm{n})\)
- \(O(n \log n)\)
- \(O\left(n_{2}\right)\)

\section*{Question No: 7 ( Marks: 1 ) - Please choose one}

Consider the following
code: \(\operatorname{For}(\mathrm{j}=1 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++\) )
For (k=1; k<15; \(\mathrm{k}++\) )
For(l=5; \(1<n ; 1++\) )
\{
Do_something_constant();

What is the order of execution for this code.

\section*{\(-\mathrm{O}(\mathrm{n})\)}
- \(\mathrm{O}\left(\right.\) n \(\left._{3}\right)\)
- O( \(\left.n_{2} \log n\right)\)
- \(\mathrm{O}\left(\mathrm{n}_{2}\right)\)

\section*{Question No: 8 ( Marks: 1 ) - Please choose one}

Consider the following Algorithm:

\section*{Factorial}
( n ) \(\{\) if \((\mathrm{n}=1\) )
return 1
else
return ( \(\mathbf{n}\) * Factorial(n-1))
\{
Recurrence for the following algorithm is:
- \(\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+1\)
- \(\mathrm{T}(\mathrm{n})=\mathrm{nT}(\mathrm{n}-1)+1\)
- \(\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+\mathrm{n}\)
- \(\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}(\mathrm{n}-1))+1\)

\section*{Question No: 9 ( Marks: 1 ) - Please choose one}

What is the total time to heapify?

\section*{- O(log \(n\) )}
- O(n \(\log \mathrm{n})\)
- O(n2 \(\log \mathrm{n})\)
- O( \(\left.\log _{2} \mathrm{n}\right)\)

\section*{Question No: 10 ( Marks: 1 ) - Please choose one}

When we call heapify then at each level the comparison performed takes time

\section*{- It will take © (1)}
- Time will vary according to the nature of input data
- It can not be predicted
- It will take \(\Theta(\log \mathrm{n})\)

\section*{Question No: 11 ( Marks: 1 ) - Please choose one}

In Quick sort, we don't have the control over the sizes of recursive calls

\section*{- True}
- False
- Less information to decide
- Either true or false

\section*{Question No: 12 ( Marks: 1 ) - Please choose one}

Is it possible to sort without making comparisons?

\section*{- Yes}
- No

Question No: 13 ( Marks: 1 ) - Please choose one
If there are \(\Theta\left(\mathrm{n}_{2}\right)\) entries in edit distance matrix then the total running time is - \(\Theta\) (1)
- \(\Theta\left(\mathbf{n}^{2}\right)\)
- \(\Theta\) ( n )
- \(\Theta\) ( \(\mathrm{n} \log \mathrm{n})\)

\section*{Question No: 14 ( Marks: 1 ) - Please choose one}

For Chain Matrix Multiplication we can not use divide and conquer approach
because,
- We do not know the optimum k
- We use divide and conquer for sorting only
- We can easily perform it in linear time
- Size of data is not given

\section*{Question No: 15 (Marks: 1 ) - Please choose one}

The Knapsack problem belongs to the domain of \(\qquad\) problems.

\section*{Optimization}
- NP Complete
- Linear Solution
- Sorting

Question No: 16 (Marks: 1 ) - Please choose one
Suppose we have three items as shown in the following table, and suppose the capacity of the knapsack is 50 i.e. \(\mathrm{W}=50\).
Item Value Weight
16010
\(2 \quad 100 \quad 20\)
\(3 \quad 120 \quad 30\)
The optimal solution is to pick
- Items 1 and 2
- Items 1 and 3
- Items 2 and 3
- None of these
```

=============================================================>

```

\section*{MCQz (Set-19)}

Question \# 1 of 10 Total Marks: 1
Divide-and-Conquer is as breaking the problem into a small number of

\section*{Smaller Sub Problems}
- Pivot
- Sieve
- Solutions

Question \# 2 of 10 Total Marks: 1
Analysis of Selection Sort ends up with

\section*{T(n)}
- \(\mathrm{T}(1 / 1+\mathrm{n})\)
-T(n/2)
- T((n/2) +n)

Question \# 3 of 10 Total Marks: 1
How many elements do we eliminate each time for the Analysis of
Selection Algorithm?
- (n / 2) + n Elements
n / 2 Elements
-n / 4 Elements

\section*{- 2 n Elements}

Question \# 4 of 10 Total Marks: 1
A heap is a left-complete binary tree that conforms to the ?
- Increasing Order
- Decreasing order

\section*{Heap Order}
- (nlog n) order

Question \# 5 of 10 Total Marks: 1
The Sieve Sequence is a special case where the number of smaller sub problems
is just_.
- 4
- Many

1
- Few

Question \# 6 of 10 Total Marks: 1
Heaps can be stored in arrays without using any pointers this is due to the of the binary tree?
- Tree Nodes
- Right-Complete Nature

\section*{Left-Complete Nature}
- Tree Leaves

Question \# 7 of 10 Total Marks: 1
For the Heap Sort access to nodes involves simple _ operations:
- Geometric
- Linear

Arithmetic
- Algebraic

Question \# 8 of 10 Total Marks: 1
The Analysis of Selection Sort shows that the total running time is indeed in n ?
- Geometric

\section*{Linear}
- Arithmetic
- Algebraic

Question \# 9 of 10 Total Marks: 1
For the sieve technique we solve the problem

\section*{Recursively}
- Randomly
- Mathematically
- Precisely

Question \# 10 of 10 Total Marks: 1
How much time merger sort takes for an array of numbers?
- T( \(\left.n^{\wedge} 2\right)\)
- T(n)
- T(log n)

\section*{T(n \(\log n\) )}

\section*{MCQz (Set-20)}

Question \# 1 of 10 ( Start time: 06:18:58 PM ) Total Marks:
1 We do sorting to,
Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in \((\log n)\) order

\section*{keep elements in increasing or decreasing order}

Question \# 2 of 10 ( Start time: 06:19:38 PM ) Total Marks: 1
Heaps can be stored in arrays without using any pointers; this
is due to the \(\qquad\) nature of the binary tree,
Select correct option:
left-complete right-
complete
tree nodes
tree leaves
Question \# 3 of 10 ( Start time: 06:20:18 PM ) Total Marks: 1
Sieve Technique can be applied to selection problem? Select correct option:

\section*{True}

False
Question \# 4 of 10 ( Start time: 06:21:10 PM ) Total Marks: 1
A heap is a left-complete binary tree that conforms to the
Select correct option:
increasing order only
decreasing order only

\section*{heap order}
\((\log \mathrm{n})\) order
Question \# 5 of 10 ( Start time: 06:21:39 PM ) Total Marks: 1
A (an)__ is a left-complete binary tree that conforms
to the heap order
Select correct
option: heap
binary tree binary
search tree array
Question \# 6 of 10 ( Start time: 06:22:04 PM ) Total Marks: 1
Divide-and-conquer as breaking the problem into a small number of
Select correct
option: pivot
Sieve

\section*{smaller sub problems}

\section*{Selection}

Question \# 7 of 10 ( Start time: 06:22:40 PM ) Total Marks: 1
In Sieve Technique we do not know which item is of interest
Select correct option:

\section*{True}

\section*{False}

Question \# 8 of 10 ( Start time: 06:23:26 PM ) Total Marks: 1 The recurrence relation of Tower of Hanoi is given below T(n)=\{1 if \(n=1\) and \(2 T(n-1)\) if \(n>1\) In order to move a tower of 5 rings from one peg to another, how many ring moves are required?
Select correct option:
16
10
32
31
Question \# 9 of 10 ( Start time: 06:24:44 PM ) Total Marks: 1
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent
\(\qquad\) series in the analysis,
Select correct
option: linear
arithmetic

\section*{geometric}
exponent
Question \# 10 of 10 ( Start time: 06:25:43 PM ) Total Marks: 1 For
the heap sort, access to nodes involves simple \(\qquad\)
operations.
Select correct
option: arithmetic
binary
algebraic

\section*{logarithmic}

Question \# 1 of 10 ( Start time: 10:02:41 PM ) Total Marks:
1 For the sieve technique we solve the problem,
Select correct
option: recursively
mathematically
precisely
accurately
The sieve technique works in \(\qquad\) as follows
Select correct
option: phases
numbers
integers
routines
Slow sorting algorithms run in,
Select correct option:

\section*{\(\mathbf{T}\left(\mathbf{n}^{\wedge} \mathbf{2}\right)\)}

T(n)
\(T(\log n)\)
A (an) \(\qquad\) is a left-complete binary tree that conforms to the heap order Select correct option:

\section*{heap}
binary tree

\section*{binary search}
tree array
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \(\qquad\) series in the analysis,
Select correct
option: linear
arithmetic

\section*{geometric}
exponent
In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as, Select correct option:
T(n)
T(n /
2) \(\log n\)
\(\mathrm{n} / 2+\mathrm{n} / 4\)
The sieve technique is a special case, where the number of sub problems is just
Select correct
option: 5
many
1
few
In which order we can sort?
Select correct option:
increasing order only
decreasing order only
increasing order or decreasing
order both at the same time
The recurrence relation of Tower of Hanoi is given below \(T(n)=\{1\) if \(n=1\) and \(2 T(n-1)\) if \(n\) \(>1\) In
order to move a tower of 5 rings from one peg to another, how many ring moves
are required?
Select correct option:
16
10
32
31
Analysis of Selection algorithm ends up with,
Select correct
option: T(n)
\(\mathrm{T}(1 / 1+\mathrm{n})\)
T(n / 2)
\(\mathbf{T}(\mathbf{n} / 2)+\mathbf{n})\)
Last message received on 10/13 at 12:43 AM
Khanjee: We do sorting to,
Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in (log n) order

\section*{keep elements in increasing or decreasing order}

Khanjee: Divide-and-conquer as breaking the problem into a small number of Select correct option:
pivot
Sieve

\section*{smaller sub problems}

Selection
The analysis of Selection algorithm shows the total running time is indeed \(\qquad\) in n ,
Select correct
option: arithmetic
geometric

\section*{linear}
orthogonal
How many elements do we eliminate in each time for the Analysis of Selection algorithm?
Select correct option:
n / 2 elements
(n / 2) +n elements
n / 4 elements
2 n elements
Sieve Technique can be applied to selection
problem? Select correct option:

\section*{True}

For the heap sort we store the tree nodes in
Select correct option:
level-order traversal
in-order traversal pre-
order traversal post-
order traversal


\section*{MCQz (Set-21)}

1-One of the clever aspects of heaps is that they can be stored in arrays without using any
pointers **
constants
variables
functions
2- For the heap sort we store the tree nodes
in level-order traversal**
in-order traversal
pre-order traversal
post-order traversal
3- The sieve technique works in as
follows phases
numbers
integers
routines
4- In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent series in the analysis,
linear
arithmetic

\section*{geometric \\ ** exponent}

5-We do sorting to,
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in \((\log n\) ) order
keep elements in increasing or decreasing order ***
6- In the analysis of Selection algorithm, we make a number of passes, in fact it could be as
many as,
\(\mathrm{T}(\mathrm{n})\)
T(n / 2)***
\(\log n\)
\(\mathrm{n} / 2+\mathrm{n} / 4\)
7- In which order we can
sort? increasing order only decreasing order only
increasing order or decreasing order ***
both at the same time
8- In Sieve Technique we do not know which item is of interest True**
False
9- For the sieve technique we solve the problem, recursively**
mathematically
precisely
10- Divide-and-conquer as breaking the problem into a small number of pivot
Sieve

\section*{smaller sub problems **}

Selection


\section*{MCQz (Set-22)}

Question \# 1 of 10 Total Marks: 1
Divide-and-Conquer is as breaking the problem into a small number of

\section*{Smaller Sub Problems}
- Pivot
- Sieve
- Solutions

Question \# 2 of 10 Total Marks: 1
Analysis of Selection Sort ends up with
T(n)
- \(\mathrm{T}(1 / 1+\mathrm{n})\)
-T(n/2)
-T((n/2) +n)
Question \# 3 of 10 Total Marks: 1

How many elements do we eliminate each time for the Analysis of
Selection Algorithm?
- (n / 2) +n Elements
n / 2 Elements
-n / 4 Elements
- 2 n Elements

Question \# 4 of 10 Total Marks: 1
A heap is a left-complete binary tree that conforms to the ?
- Increasing Order
- Decreasing order

\section*{Heap Order}
- (nlog n ) order

Question \# 5 of 10 Total Marks: 1
The Sieve Sequence is a special case where the number of smaller sub problems is
just_.
. 4
Many
1
- Few

Question \# 6 of 10 Total Marks: 1
Heaps can be stored in arrays without using any pointers this is due to the of the binary tree?
- Tree Nodes
- Right-Complete Nature

\section*{Left-Complete Nature}
- Tree Leaves

Question \# 7 of 10 Total Marks: 1
For the Heap Sort access to nodes involves simple _ operations:
- Geometric
- Linear

\section*{Arithmetic}
- Algebraic

Question \# 8 of 10 Total Marks: 1
The Analysis of Selection Sort shows that the total running time is indeed in n ?
- Geometric

\section*{Linear}
- Arithmetic
- Algebraic

Question \# 9 of 10 Total Marks: 1
For the sieve technique we solve the problem

\section*{Recursively}
- Randomly
- Mathematically
- Precisely

Question \# 10 of 10 Total Marks: 1
How much time merger sort takes for an array of numbers? • \(\mathrm{T}\left(\mathrm{n}^{\wedge} 2\right)\)
- T(n)
- T(log n)

T(n \(\log \mathrm{n})\)

\section*{MCQz (Set-23)}

Question \# 2 of 10 ( Start time: 09:23:34 PM ) Total Marks: 1
The analysis of Selection algorithm shows the total running time is indeed in \(n\),
Select correct option:

\section*{arithmetic}

\section*{geometric}
linear
orthogonal
Question \# 3 of 10 ( Start time: 09:24:49 PM ) Total Marks: 1
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \(\qquad\) series in the analysis, Select correct option:
linear
arithmetic
geometric
exponent
Question \# 4 of 10 ( Start time: 09:25:08 PM ) Total Marks: 1
Slow sorting algorithms run in,
Select correct option:
\begin{tabular}{ll}
\(\mathbf{T}\left(\mathbf{n}^{\wedge} \mathbf{2}\right)\) & page \(\mathbf{3 9}\) \\
\(T(n)\) & \\
\(T(\log n)\) & \\
\(T(n \log n)\) &
\end{tabular}

Question \# 5 of 10 ( Start time: 09:26:31 PM ) Total Marks: 1
Heaps can be stored in arrays without using any pointers; this is due to the nature of the binary tree,
Select correct option:

\section*{left-complete}
right-complete
tree nodes
tree leaves

Question \# 6 of 10 ( Start time: 09:27:11 PM ) Total Marks: 1

A heap is a left-complete binary tree that conforms to the \(\qquad\)
Select correct option:
increasing order only decreasing order only

\section*{heap order}
( \(\log \mathrm{n}\) ) order
Question \# 7 of 10 ( Start time: 09:27:25 PM ) Total Marks: 1
Divide-and-conquer as breaking the problem into a small number of
Select correct option:
pivot
Sieve

\section*{smaller sub problems}

Selection
Question \# 8 of 10 ( Start time: 09:27:45 PM ) Total Marks: 1
The number of nodes in a complete binary tree of height \(h\) is
Select correct option:
\[
\begin{aligned}
& \mathbf{2}^{\wedge}(\mathbf{h}+\mathbf{1})-\mathbf{1} \\
& 2^{*}(\mathrm{~h}+1)-1 \\
& 2^{*(h+1)} \\
& \left((\mathrm{h}+1)^{\wedge}\right)-1
\end{aligned}
\]

Question \# 9 of 10 ( Start time: 09:28:01 PM ) Total Marks: 1
The sieve technique works in \(\qquad\) as follows
Select correct option:

\section*{phases}
numbers
integers
routines
Question \# 10 of 10 ( Start time: 09:28:24 PM ) Total Marks: 1
The running time of quick sort depends heavily on the selection of
Select correct option:
No of inputs
Arrangement of elements in array
Size o elements

\section*{Pivot element}

Question \# 1 of 10 ( Start time: 09:22:00 PM ) Total Marks: 1 In Quick sort algorithm, constants hidden in \(\mathbf{T}(\mathbf{n} \lg \mathbf{n}\) ) are Select correct option:

Large
Medium
Not known (not
confirmed) small

\section*{MCQz (Set-24)}

Question \# 1
Sorting is one of the few problems where provable \(\qquad\) bonds exits on how fast we can sort,
Select correct
option: upper
lower page 39
average
\(\log n\)
Question \# 2
For the heap sort we store the tree nodes in
Select correct option:

\section*{level-order traversal}
in-order traversal pre-
order traversal post-
order traversal

Question \# 3
Quick sort is based on divide and conquer paradigm; we divide the problem on base of pivot element and:
Select correct option:
There is explicit combine process as well to conquer the solutin.
No work is needed to combine the sub-arrays, the array is already sorted
Merging the subarrays
None of above.

Question \# 4
In Sieve Technique we do not know which item is of interest
Select correct option:
True
False
Question \# 5
One of the clever aspects of heaps is that they can be stored in arrays without using any \(\qquad\) .
Select correct option:
pointers
constants
variables

\section*{functions}

Question \# 6
The sieve technique is a special case, where the number of sub problems is just Select correct option:
5
many
1
few
Question \# 7
The number of nodes in a complete binary tree of height \(h\) is
Select correct option:
\(\mathbf{2}^{\wedge}(\mathrm{h}+1)\) - 1
2 * \((\mathrm{h}+1)-1\)
2 * (h+1)
\(\left((\mathrm{h}+1)^{\wedge} 2\right)-1\)
Question \# 8
A heap is a left-complete binary tree that conforms to the \(\qquad\)
Select correct option:
increasing order only
decreasing order only
heap order
\((\log n)\) order
Question \# 9
In which order we can sort?
Select correct option:
increasing order only
decreasing order only
increasing order or decreasing
order both at the same time
Question \# 10
The sieve technique works in \(\qquad\) as follows
Select correct option:

\section*{phases}
numbers
integers
routines

\section*{MCQz (Set-26) From 2004 Paper}

Q\#1Total time for heapify is:
O \(\left(\log ^{2} n\right)\)
\(\mathrm{O}(\mathrm{n} \log \mathrm{n})\)
\(\mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)\)

\section*{O (log n)}

\section*{Q\#2}

Solve the recurrence using iteration method and also find time complexity ( \(\Theta\) notation) T \((\mathrm{n})=\mathrm{C}+\mathrm{O}(1)+\mathrm{T}(\mathrm{n}-1) \mathrm{T}(1)=1\) and C is a constant.

\section*{Q\#3}

Suggest the criteria for measuring algorithms. Also discuss the issues need to be discussed in the algorithm design.

\section*{Q\#4}

If an algorithm has a complexity of \(\log 2 \boldsymbol{n}+\boldsymbol{n l o g} 2 \boldsymbol{n}+\mathbf{n}\). we could say that it has complexity
O(n)
\(\mathrm{O}(\mathrm{n} \log 2 \mathrm{n})\)
\(\mathrm{O}(3)\)
\(\mathrm{O}\left(\log _{2}\left(\log _{2} \mathrm{n}\right)\right)\)
O ( \(\left.\log _{2} \mathrm{n}\right)\)

\section*{Q\#5}

Let the set \(\mathrm{P}=\{(1,13),(2,9),(3,15),(4,12),(5,14),(6,6),(7,3),(8,10),(9,2),(10,8)\), \((11,9),(13,6),(15,3),(18,5)\}\). You are required to give the final state of stack after the execution of sweep line algorithm for 2d-maxima. No intermediate steps or graphics to be shown.

\section*{Q\#6}

Suppose we have hardware capable of executing \(10^{6}\) instructions per second. How long would it take to execute an algorithm whose complexity function is \(T(n)=2 n^{2}\) on an input of size \(n=10^{8}\) ?

\section*{Q\#7}

In RAM model instructions are executed One after another
Parallel
Concurrent
Random

\section*{Q\#8}

In selection algorithm, because we eliminate a constant fraction of the array with each phase, we get the
Convergent geometric series
Divergent geometric
series None of these

\section*{Q\#9}

Due to left-complete nature of binary tree, heaps can be stored in
Link list
Structure
Array
None of above

\section*{MCQz (Set-27) From 2004 Paper}

Consider the following pairs of functions
I. \(\mathrm{f}(\mathrm{x})=\mathrm{x} 2+3 \mathrm{x}+7 \mathrm{~g}(\mathrm{x})=\mathrm{x} 2+10\)

II \(f(x)=x_{2} \log (x) g(x)=x_{3}\)
III \(\mathrm{f}(\mathrm{x})=\mathrm{x}_{4}+\log (3 \mathrm{x} 8+7) \mathrm{g}(\mathrm{x})=\left(\mathrm{x}_{2}+17 \mathrm{x}+3\right)_{2}\)
Which of the pairs of functions \(f\) and \(g\) are asymptotic?
Only I
Only II
Both I and III
None of the above
Question No. 3 Marks : 1
Execution of the following code
fragment int Idx;
for \(\left(\operatorname{Idx}=0 ; \operatorname{Idx}<\mathrm{N} ; \mathrm{Idx}^{++}\right.\))
\{
cout << A[Idx] << endl;
\}
is best described as being
\(\mathrm{O}(\mathrm{N})\)
\(\mathrm{O}\left(\mathrm{N}_{2}\right)\)
\(\mathrm{O}(\log \mathrm{N})\)
\(\mathrm{O}(\mathrm{N} \log \mathrm{N})\)
Question No. 4 Marks : 1
If algorithm \(A\) has running time \(7 \mathrm{n}_{2}+2 \mathrm{n}+3\) and algorithm \(B\) has running time \(2 \mathrm{n}_{2}\), then Both have same asymptotic time complexity
A is asymptotically greater
\(B\) is asymptotically greater
None of others
Question No. 5 Marks : 1
Which of the following sorting algorithms is stable?
(i) Merge sort,
(ii) Quick sort,
(iii) Heap sort,
(iv) Counting

Sort. Only i
Only ii
Both i and ii
Both iii and iv
Question No. 6 Marks : 5
Determine the complexity of an algorithm that measures the number of print statements in an
algorithm that takes a positive integer \(n\) and prints 1 one time, 2 two times, 3 three times , ... ,
n n times.
That is
1
22
333
n n n n .........n ( n times)

\section*{MCQz (Set-28) From 2007 Paper}

Q\#1 Total time for heapify is:
O ( \(\log 2 \mathrm{n}\) )
O ( \(\mathrm{n} \log \mathrm{n}\) )
O (n2 \(\log \mathrm{n})\)
O ( \(\log \mathrm{n}\) )

\section*{Q\#2}

Solve the recurrence using iteration method and also find time complexity ( \(\Theta\) notation) \(\mathrm{T}(\mathrm{n})=\mathrm{C}+\mathrm{O}(1)+\mathrm{T}(\mathrm{n}-1)\)
\(\mathrm{T}(1)=1\) and C is a constant.
Q\#3
Suggest the criteria for measuring algorithms. Also discuss the issues need to be discussed in the algorithm design.
Q\#4
If an algorithm has a complexity of \(\log \mathbf{2} \boldsymbol{n}+\boldsymbol{n l o g} \mathbf{2} \boldsymbol{n}+\mathbf{n}\). we could say that it has complexity
\(\mathrm{O}(\mathrm{n})\)
\(\mathrm{O}(\mathrm{n} \log 2 \mathrm{n})\)
O(3)
\(\mathrm{O}(\log 2(\log 2 \mathrm{n}\)
)) O ( \(\log 2 \mathrm{n})\)
Q\#5
Let the set \(\mathrm{P}=\{(1,13),(2,9),(3,15),(4,12),(5,14),(6,6),(7,3),(8,10),(9,2),(10,8)\), \((11,9),(13,6),(15,3),(18,5)\}\). You are required to give the final state of stack after the execution of sweep line algorithm for 2d-maxima. No intermediate steps or graphics to be shown.

\section*{Q\#6}

Suppose we have hardware capable of executing 106 instructions per second. How long would it take to execute an algorithm whose complexity function is \(\mathrm{T}(\mathrm{n})=2 \mathrm{n} 2\) on an input of size \(n=108\) ?
Q\#7
In RAM model instructions are executed
One after another
Parallel
Concurrent
Random

\section*{Q\#8}

In selection algorithm, because we eliminate a constant fraction of the array with each phase, we get the
Convergent geometric series
Divergent geometric series
None of these
Q\#9

Due to left-complete nature of binary tree, heaps can be stored in Link list
Structure
Array
None of above
```


[^0]:    

