Question \# 1 (Start time: 04:49:47 PM) Total Marks: 1
A free tree with n vertices have exactly \qquad edges.
Select correct option:
$\star \mathrm{n}$
Page | 1

- $\mathrm{n}+1$
\star n-1 (Page No. No. 142)
$\star 1$

Question \# 2 (Start time: 04:50:38 PM) Total Marks: 1
In Timestamped DFS-cycles lemma, if edge (u, v) is a back edge, then \qquad
Select correct option:
$\star \mathrm{f}[\mathrm{u}] \geq \mathrm{f}[\mathrm{v}]$
$\star \mathrm{f}[\mathrm{u}] \leq \mathrm{f}[\mathrm{v}]$ (Page No. No. 130)
$\star \mathrm{f}[\mathrm{u}]=\mathrm{f}[\mathrm{v}]$
$\star \mathrm{f}[\mathrm{u}]$ \geqslant $\mathrm{f}[\mathrm{v}]$

Question \# 3 (Start time: 04:52:12 PM) Total Marks: 1
In Prim's algorithm, at any time, the subset of edges A forms a single \qquad .
Select correct option:
\star Vertex
\star Forest
\star Tree (Page No. No. 151)
\star Graph

Question \# 4 (Start time: 04:53:18 PM) Total Marks: 1
Back edge is:
Select correct option:
(u, v) where v is ancestor of u in the tree. (Page No. No. 128)
$\star(u, v)$ where u is an ancesstor of v in the tree.
$\star(u, v)$ where v is an predcessor of u in the tree.
\star None of above

Question \# 5 (Start time: 04:53:57 PM) Total Marks: 1
The tricky part of the \qquad algorithm is how to detect whether the addition of an edge will create a cycle in viable set A.
Select correct option:
\star Kruskal's (Page No. No. 147)

Prim's

* Both
* None

Page | 2 Question \# 6 (Start time: 04:54:38 PM) Total Marks: 1
What algorithm technique is used in the implementation of Kruskal solution for the MST?
Select correct option:

* Greedy Technique (Page No. No. 142)
* Divide-and-Conquer Technique
* Dynamic Programming Technique
\star The algorithm combines more than one of the above techniques i.e. Divide-and-Conquer and Dynamic Programming

Question \# 7 (Start time: 04:55:05 PM) Total Marks: 1
Networks are \qquad in the sense that it is possible from any location in the network to reach any other location in the digraph.
Select correct option:
\star Complete (Page No. No. 155)
\star Incomplete
\star Not graphs
\star Transportation

Question \# 8 (Start time: 04:55:59 PM) Total Marks: 1
Networks are complete in the sense that it is possible from any location in the network to reach any other location in the digraph.
Select correct option:
\star True (Page No. No. 155)
\star False

Question \# 9 (Start time: 04:57:00 PM) Total Marks: 1
Which is true statement in the following.
Select correct option:
Ł Kruskal algorithm is multiple source technique for finding MST.
\star Kruskal's algorithm is used to find minimum spanning tree of a graph, time complexity of this algorithm is O(EV)
\star Both of above

* Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best Tree edge) when the graph has relatively few edges.

ONLINEVU.BLOGSPOT.COM

Question \# 10 (Start time: 04:57:46 PM) Total Marks: 1
Timestamp structure of \qquad is used in determining the strong components of a digraph.
Select correct option:
DFS
Page | 3

BFS

\star Both DFS \& BFS
\star None

Question \# 11 (Start time: 05:37:42 PM) Total Marks: 1
In Prim's algorithm, we start with the root vertex r; it can be any vertex.
Select correct option:

Question \# 12 (Start time: 05:38:35 PM) Total Marks: 1
You have an adjacency list for G , what is the time complexity to compute Graph transpose $\mathrm{G}^{\wedge} \mathrm{T}$.?
Select correct option:

```
    ?(V+E)
* ? (V E)
* ? (V)
* ?(V^2)
```

Question \# 13 (Start time: 05:39:40 PM) Total Marks: 1 Equivalence relation partitions the vertices into \qquad classes of mutually reachable vertices and these are the strong components
Select correct option:
\star Variance
\star Equivalence (Page No. No. 136)
\star Non equivalence
\star Non classes

Question \# 14 (Start time: 05:40:16 PM) Total Marks: 1
If u and v are mutually reachable in G, then in the graph formed by reversing all the edges, these vertices are not reachable.
Select correct option:
\star False

ONLINEVU.BLOGSPOT.COM

Question \# 15 (Start time: 05:41:08 PM) Total Marks: 1
Kruskal's algorithm works by adding vertices in increasing order of weight (lightest edge first).
Select correct option:
True
False (Page No. No. 147)

Question \# 16 (Start time: 05:41:50 PM) Total Marks: 1
Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best tree edge) when the graph has relatively few edges.

```
* True
```

\star False

Question \# 17 (Start time: 05:42:45 PM) Total Marks: 1
In Kruskal's algorithm, the next edge is added to viable set A , if its adding does not induce a cycle.
\star True
\star False

Question \# 18 (Start time: 05:43:48 PM) Total Marks: 1
According to parenthesis lemma, vertex u is unrelated to v vertex if and only if $d[u], f[u]]$ and $[\mathrm{d}[\mathrm{v}], \mathrm{f}[\mathrm{v}]]$ are disjoint.
True
\star False

Question \# 19 (Start time: 05:44:34 PM) Total Marks: 1 Cross edge is :
$\star(u, v)$ where u and v are not ancestor of one another
$\star(u, v)$ where u is ancesstor of v and v is not descendent of u.
$\star \quad(u, v)$ where u and v are not ancestor or descendent of one another
$\star(u, v)$ where u and v are either ancestor or descendent of one another.

Question \# 20 (Start time: 05:45:27 PM) Total Marks: 1
A free tree with n vertices have exactly $n+1$ edges.
True
\star False

Question \# 21 (Start time: 10:24:21 PM) Total Marks: 1
The \qquad given by DFS allow us to determine whether the graph contains any cycles.
Select correct option:

ONLINEVU.BLOGSPOT.COM

```
\star Time stamps
\star BFS traversing
\star Topological sort
```

Page | 5 Question \# 22 (Start time: 06:32:34 PM) Total Marks: 1
Adding any edge to a free tree creates a unique cycle.
Select correct option:

* True (Page No. 142)
\star False

Question \# 23 (Start time: 06:33:21 PM) Total Marks: 1
What is the time complexity to extract a vertex from the priority queue in Prim's algorithm?
Select correct option:
$\star \log (\mathrm{V})$ (Page No. 152)
\star V.V
\star E.E
$\star \log (E)$

Question \# 24 (Start time: 06:34:52 PM) Total Marks: 1
By breaking any edge on a cycle created in free tree, the free \qquad is restored. Select correct option:
\star Edge

* Tree (Page No. 142)
* Cycle
* Vertex

Question \# 25 (Start time: 06:37:14 PM) Total Marks: 1
We say that two vertices u and v are mutually \qquad if u can reach v and vice versa.

Select correct option:
\star Crossed
\star Forward
\star Reachable (Page No. 135)

* Not Reachable

Question \# 26 (Start time: 06:42:45 PM) Total Marks: 1
According to parenthesis lemma, vertex u is a descendent of v vertex if and only if;
Select correct option:

```
\star [d[u],f[u]]\subseteq[d[v],f[v]] (Page No. 129)
\star [d[u],f[u]] \supseteq[d[v], f[v]]
\star Unrelated
\star Disjoint
```

Page | 6

Question \# 27 (Start time: 06:43:51 PM) Total Marks: 1
There are no \qquad edges in undirected graph.
Select correct option:
\star Forward
\star Back
\star Cross (Page No. 130)
\star Both forward and back
Question \# 28 (Start time: 06:46:27 PM) Total Marks: 1
In digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$; G has cycle if and only if
Select correct option:
\star The DFS forest has forward edge.
\star The DFS forest has back edge (Page No. 131)
\star The DFS forest has both back and forward edge
\star BFS forest has forward edge

Question \# 29 (Start time: 06:47:40 PM) Total Marks: 1 Digraphs are not used in communication and transportation networks. Select correct option:
\star True
\star False (Page No. 135)

Question \# 30 (Start time: 06:48:21 PM) Total Marks: 1
In Prim's algorithm, we start with the \qquad vertex r; it can be any vertex.
Select correct option:
\star First
\star Leaf
\star Mid
\star Root (Page No. 149)

Question \# 31 (Start time: 06:48:53 PM) Total Marks: 1
In Generic approach determining of Greedy MST, we maintain a subset A of \qquad .

ONLINEVU.BLOGSPOT.COM

Select correct option:
Edges (Page No. 143)
\star Vertices
\star Cycles
Page $17 \quad \star$ Paths

Question \# 32 (Start time: 06:50:37 PM) Total Marks: 1
There is relationship between number of back edges and number of cycles in DFS
Select correct option:
\star Both are equal.

* Cycles are half of back edges.
\star Cycles are one fourth of back edges.
\star There is no relationship between back edges and number of cycles.

Question \# 33 (Start time: 06:54:42 PM) Total Marks: 1
For undirected graph, there is no distinction between forward and back edges.
Select correct option:
\star True (Page No. 130)
\star False

Question \# 34 (Start time: 07:00:59 PM) Total Marks: 1
In computing the strongly connected components of a digraph, vertices of the digraph are \qquad into subsets. Select correct option:
\star Joined
\star Partitioned (Page No. 135)
\star Deleted
\star Created

Question \# 35 (Start time: 09:17:53 PM) Total Marks: 1
Using ASCII code, each character is represented by a fixed-length code word of \qquad bits per character. Select correct option:
$\star 4$
$\star 6$
$\star 8$ (Page No. 99)

- 10

Question No: 4 (Marks: 1) - Please choose one

ONLINEVU.BLOGSPOT.COM

CS502 Finalterm Quiz

Semester: Spring 2014
https://www.facebook.com/groups/onlinvu
(Hunain Raza) cyberianstars@gmail.com

In Knapsack Problem, the thief's goal is to put items in the bag such that the \qquad of the items does not exceed the limit of the bag.
\star Value (Page No. 91)
\star Weight
\star Length
\star Balance

Question \# 36 (Start time: 09:11:49 PM) Total Marks: 1
In Activity selection (using Greedy approach), intuitively \qquad .
Select correct option:

* Short activities are not preferable
* There are always short activities as input
* We do not like long activities (Page No. 105)
* It does not matter about the length of activities

Question \# 37 (Start time: 09:12:32 PM) Total Marks: 1 The prefix code generated by Huffman algorithm \qquad the expected length of the encoded string. Select correct option:

* Minimizes (Page No. 102)
* Balances
- Maximizes
* Keeps Constant

Question \# 38 (Start time: 09:13:50 PM) Total Marks: 1
In a digraph, the number of edges coming in of a vertex is not called the in-degree of that vertex.
Select correct option:
True
False (Page No. 114)

Question \# 39 (Start time: 09:14:38 PM) Total Marks: 1
Graphs are important \qquad model for many application problems.

Select correct option:

* Unsystematic
* Mathematical (Page No. 113)
* Haphazard
* Unpredictable

ONLINEVU.BLOGSPOT.COM

Question \# 40 (Start time: 09:15:40 PM) Total Marks: 1
In Activity scheduling algorithm, each activity is represented by a \qquad
Select correct option:
Circle
Page | 9
Square

* Triangle
\star Rectangle (Page No. 106)

Question \# 41 (Start time: 09:16:46 PM) Total Marks: 1
In \qquad algorithm, you hope that by choosing a local optimum at each step, you will end up at a global
optimum.
Select correct option:

* Simple
* Non Greedy
* Greedy (Page No. 97)
* Brute force

Question \# 42 (Start time: 09:17:21 PM) Total Marks: 1
In general, a graph $G=(V, E)$ consists of a \qquad and E, a binary relation on V called edges.
Select correct option:

* Infinite set of vertices V
* Infinite set of nodes
* Finite set of vertices V (Page No. 113)
* Infinite set of objects

Question \# 43 (Start time: 09:18:20 PM) Total Marks: 1 In general, the Activity selection problem is to select a \qquad
Select correct option:

* minimum-size set of interfering activities
\star maximum-size set of mutually non-interfering activities (Page No. 105)
* maximum-size set of interfering activities
\star minimum-size set of mutually non-interfering activities

Question \# 44 (Start time: 09:18:59 PM) Total Marks: 1
Breadth-first search is not a popular algorithm technique used for traversing graphs.
Select correct option:
True

ONLINEVU.BLOGSPOT.COM
\star False

Question \# 45 (Start time: 10:02:47 PM) Total Marks: 1
A vertex a is not adjacent to vertex b if there is an edge from a to b.
Page | 10
Select correct option:
\star True
\star False (Page No. 113)

Question \# 46 (Start time: 10:03:54 PM) Total Marks: 1
A number of lectures are to be given in a single lecture hall. Optimum scheduling for this is an example of Activity selection.
Select correct option:

```
* True (Page No. 105)
* False
```

Question \# 47 (Start time: 10:04:53 RM) Total Marks: 1
In Activity Selection, we say that two activities are non-interfering if their start-finish interval \qquad overlap. Select correct option:
\star Do
\star Do not (Page No. 105)

* Sometimes
* Once

Question \# 48 (Start time: 10:06:32 PM) Total Marks: 1
In Activity scheduling algorithm, as base case if there are no activities then Greedy algorithm \qquad Select correct option:

* cannot be optimized
\star is solved using Recursion
* is transformed into Dynamic Programming
* is trivially optimal (Page No. 109)

Question \# 49 (Start time: 10:07:13 PM) Total Marks: 1
Graphs can be represented by an adjacency list.
Select correct option:
\star True (Page No. 120)

* False

Question \# 50 (Start time: 10:08:10 PM) Total Marks: 1

ONLINEVU.BLOGSPOT.COM

For traversing graphs, Breadth-first search can be visualized as a wave front propagating inwards towards root (or source) node.
Select correct option:
True
False (Page No. 117)

Question \# 51 (Start time: 10:08:43 PM) Total Marks: 1
In a digraph, the number of edges coming out of a vertex is not called the out-degree of that vertex.
Select correct option:
\star True
\star False (Page No. 114)

Question \# 52 (Start time: 10:09:36 PM) Total Marks: 1
In Activity scheduling algorithm, the width of a rectangle \qquad
Select correct option:
\star Is always ignored
\star Directs towards recursion
\star Should be maximized
\star Indicates the duration of an activity (Page No. 106)

Question \# 53 (Start time: 10:58:41 PM) Total Marks: 1
In Huffman Encoding, the characters with smallest probabilities are placed at the \qquad depth of the tree.
Select correct option:
\star Minimum
\star Average
\star Maximum (Page No. 102)
\star Root

Question \# 54 (Start time: 11:00:35 PM) Total Marks: 1
A greedy algorithm does not work in phases.
Select correct option:
True
False (Page No. No. 97)

Question \# 55 (Start time: 11:03:39 PM) Total Marks: 1
Dynamic Programing approach solves both 0/1 Knapsack and Fractional Knapsack problems.
Select correct option:

ONLINEVU.BLOGSPOT.COM

CS502 Finalterm Quiz

Semester: Spring 2014
https://www.facebook.com/groups/onlinvu
(Hunain Raza) cyberianstars@gmail.com

False

Question \# 56 (Start time: 11:04:22 PM) Total Marks: 1
The activity scheduling is a simple scheduling problem for which the greedy algorithm approach provides a/an
\qquad solution.
Select correct option:

* Simple
* Sub optimal
* Optimal (Page No. 105)
- Non optimal

Question \# 57 (Start time: 11:19:34 PM) Total Marks: 1
Graphs cannot be traversed by brute-force technique.
Select correct option:

- True
\star False

Question \# 58 (Start time: 11:20:38 PM) Total Marks: 1
A graph is not connected if every vertex can reach every other vertex.
Select correct option:
True
\star False (Page No. 116)

Question \# 59 (Start time: 11:21:21 PM) Total Marks: 1
For a digraph $G=(V, E)$, Sum of in-degree(v) \qquad
Select correct option:
\star Not equal to Sum of out-degree(v)
$\star=$ Sum of out-degree(v)
\star < Sum of out-degree(v)
$\star>$ Sum of out-degree(v)

Question \# 60 (Start time: 11:21:57 PM) Total Marks: 1
\qquad approach is optimal for the fractional knapsack problem.
Select correct option:

* Divide and Conquer
* Dynamic Programming
* Greedy algorithm (Page No. 110)
* Brute force

ONLINEVU.BLOGSPOT.COM

Question \# 61 (Start time: 11:24:05 PM) Total Marks: 1
In general in comparison with Fractional Knapsack problem, \qquad
Select correct option:

* 0-1 knapsack problem is very easy to solve

Page | 13

* 0-1 knapsack problem is hard to solve
* Both are easy to solve
* We cannot compare them

Question \# 62 (Start time: 10:10:00 PM) Total Marks: 1
In Activity scheduling algorithm, the time is dominated by sorting of the activities by \qquad
Select correct option:

* start times
\star finish times (Page No. 106)

Question \# 63 (Start time: 10:10:54 PM) Total Marks: 1
In Huffman encoding, for a given message string, the frequency of occurrence (relative probability) of each character in the message is determined last.
Select correct option:

* True
* False

Question \# 64 (Start time: 10:11:32 PM) Total Marks: 1
In Huffman encoding, the \qquad is the number of occurrence of a character divided by the total characters in the message.
Select correct option:

```
* Counting
* Parsing
* Probability (Page No. 100)
* Weight
```

Question \# 65 (Start time: 10:12:27 PM) Total Marks: 1
In \qquad problem, we want to find the best solution.
Select correct option:

* Minimization
* Averaging
* Optimization (Page No. 97)
* Maximization

ONLINEVU.BLOGSPOT.COM

Question \# 66 (Start time: 10:12:56 PM) Total Marks: 1
Bag is a \qquad -
Select correct option:
type of algorithm
\star program
\star compiler

Question \# 67 (Start time: 10:43:12 PM) Total Marks: 1
In \qquad algorithm, at any time, the subset of edges A forms a single tree.
Select correct option:
\star Kruskal's
\star Prim's (Page No. 149)
\star Both
\star None

Question \# 68 (Start time: 10:42:30 PM) Total Marks: 1
Adding any edge to a free tree creates a unique \qquad .
Select correct option:
\star Vertex
\star Edge
\star Cycle (Page No. 142)
\star Strong component

Question \# 69 (Start time: 10:41:20 PM) Total Marks: 1

In computing the strongly connected components of a digraph, vertices of the digraph are not partitioned into subsets.
Select correct option:
\star True
\star False (Page No. 135)

Question \# 70 (Start time: 10:41:02 PM) Total Marks: 1
Strongly connected components are not affected by reversal of all edges in terms of vertices reachability.
Select correct option:
\star True (Page No. 139)

- False

ONLINEVU.BLOGSPOT.COM

In Prim's algorithm, we will make use of priority \qquad -
Select correct option:

```
* Stack
    \star Queue (Page No. 150)
    * Array
    \star Graph
```

Question \# 72 (Start time: 10:38:26 PM) Total Marks: 1
In strong components algorithm, the form of graph is used in which all the \qquad of original graph G have been reversed in direction.
Select correct option:

* Vertices
\star Edges (Page No. 138)
* Both edges \& vertices
* None of the above

Question \# 73 (Start time: 10:37:05 PM) Total Marks: 1
In Kruskal's algorithm, the next \qquad is not added to viable set A, if its adding induce a/an cycle.
Select correct option:

```
    Vertex
* Edge
* Cycle
* Tree
```

Question \# 74 (Start time: 10:36:24 PM) Total Marks: 1 Forward edge is:
Select correct option:
$\star(u, v)$ where u is a proper descendent of v in the tree.

$\star \quad(u, v)$ where v is a proper descendent of u in the tree. (Page no. 129)

* (u, v) where v is a proper ancesstor of u in the tree.
$\star(u, v)$ where u is a proper ancesstor of v in the tree.

Question \# 75 (Start time: 10:28:46 PM) Total Marks: 1
Kruskal's algorithm works by adding \qquad in increasing order of weight (lightest edge first). Select correct option:
\star Vertices
\star Edges (Page No. 147)

ONLINEVU.BLOGSPOT.COM

CS502 Finalterm Quiz

Semester: Spring 2014

Trees

* Weights

Question \# 76 (Start time: 10:29:13 PM) Total Marks: 1
Page \| 16 There exist a unique path between any two vertices of a free tree.
Select correct option:
\star True (Page No. 142)

* False

Question \# 77 (Start time: 09:29:14 PM) Total Marks: 1
In undirected graph, by convention all the edges are called \qquad edges. Select correct option:

* Forward
\star Back (Page No. 130)
* Cross
\star Both forward and back

Question \# 78 (Start time: 09:30:02 PM) Total Marks: 1
In strong components algorithm, first of all DFS is run for getting \qquad times of vertices.
Select correct option:

* Start
\star Finish
* Both start \& finish
\star None of the above

Question \# 79 (Start time: 09:31:24 PM) Total Marks: 1
If you find yourself in maze the better traversal approach will be :
Select correct option:
\star BFS

* BFS and DFS both are valid
\star Level order
\star DFS

Question \# 80 (Start time: 09:37:01 PM) Total Marks: 1
In strong components algorithm, the form of graph is used in which all the vertices of original graph G have been reversed in direction.
Select correct option:
\star True

ONLINEVU.BLOGSPOT.COM

```
False
```

Question \# 81 (Start time: 09:38:11 PM) Total Marks: 1
If a vertex v is a descendent of vertex u, then v 's start-finish interval is contained within u 's start-finish interval.
Select correct option:

```
\(\star\) Irue
```

\star False

Question No: 82 (Marks: 1) - Please choose one
An optimization problem is one in which you want to find,

* Not a solution
* An algorithm
* Good solution
\star The best solution (Page No. 97)

Question No: 83 (Marks: 1) -Please choose one
The greedy part of the Huffman encoding algorithm is to first find two nodes with larger frequency.
\star True
\star False (Page No. 100)

Question No: 84 (Marks: 1) - Please choose one
The code words assigned to characters by the Huffman algorithm have the property that no code word is the postfix of any other.

True
\star False (Page No. 101)

Question No: 85 (Marks: 1) - Please choose one
Huffman algorithm uses a greedy approach to generate a postfix code T that minimizes the expected length B (T) of the encoded string.
\star True
\star False (Page No. 102)

Question No: 86 (Marks: 1) - Please choose one
Shortest path problems can be solved efficiently by modeling the road map as a graph.

```
\(\star\) True (Page No. 153)
```

\star False

Question No: 87 (Marks: 1) - Please choose one

ONLINEVU.BLOGSPOT.COM

Dijkestra's single source shortest path algorithm works if all edges weights are non-negative and there are negative cost cycles.
\star True
\star False (Page No. 159)

Question No: 88 (Marks: 1) - Please choose one
Bellman-Ford allows negative weights edges and negative cost cycles.
\star True
\star False (Page No. 159)

Question No: 89 (Marks: 1) - Please choose one
The term "coloring" came form the original application which was in architectural design.
True
\star False (Page No. 176)

Question No: 90 (Marks: 1) - Please choose one
In the clique cover problem, for two vertices to be in the same group, they must be adjacent to each other.
\star True (Page No. 176)
\star False

Question No: 91 (Marks: 1) - Please choose one
Dijkstra's algorithm is operates by maintaining a subset of vertices
\star True (Page No. 155)
\star False

Question No: 92 (Marks: 1) - Please choose one
The difference between Prim's algorithm and Dijkstra's algorithm is that Dijkstra's algorithm uses a different key.
\star True (Page No. 156)

* False

Question No: 93 (Marks: 1) - Please choose one
After partitioning array in Quick sort, pivot is placed in a position such that
\star Values smaller than pivot are on left and larger than pivot are on right (Page No. 48)

* Values larger than pivot are on left and smaller than pivot are on right
\star Pivot is the first element of array

ONLINEVU.BLOGSPOT.COM

Pivot is the last element of array

Question No: 94 (Marks: 1) - Please choose one
Merge sort is stable sort, but not an in-place algorithm
\star True (Page No. 54)

* False

Question No: 95 (Marks: 1) - Please choose one
In counting sort, once we know the ranks, we simply \qquad numbers to their final positions in an output array.

- Delete
\star copy (Page No. 57)
* Mark
\star arrange

Question No: 96 (Marks! 1) -Please choose one
Dynamic programming algorithms need to store the results of intermediate sub-problems.
\star True (Page No. 75)
\star False

Question No: 97 (Marks: 1) - Please choose one
$A p \times q$ matrix A can be multiplied with a $q \times r$ matrix B. The result will be a $p \times r$ matrix C. There are ($p . r$) total entries in C and each takes \qquad to compute.
\star (q) (Page No. 84)
\star (1)
$\star(\mathrm{n} 2)$
$\star(\mathrm{n} 3)$

Question No: 98 (Marks: 1) - Please choose one
Which of the following is calculated with big o notation?
\star Lower bounds
\star Upper bounds (Page No. 25)
\star Both upper and lower bound
\star Medium bounds

Question No: 99 (Marks: 1) - Please choose one
One of the clever aspects of heaps is that they can be stored in arrays without using any \qquad .
Pointers (Page No. 40)

ONLINEVU.BLOGSPOT.COM

CS502 Finalterm Quiz

Semester: Spring 2014

```
constants
\star variables
* functions
```

Page | 20 Question No: 100 (Marks: 1) - Please choose one Merge sort requires extra array storage,

```
\star True (Page No. 54)
\star False
```

Question No: 101 (Marks: 1) - Please choose one
Non-optimal or greedy algorithm for money change takes \qquad
\star O(k) (Page No. 99)
$\star \mathrm{O}(\mathrm{kN})$
$\star \mathrm{O}(2 \mathrm{k})$
$\star \mathrm{O}(\mathrm{N})$

Question No: 102 (Marks: 1) - Please choose one
The Huffman codes provide a method of encoding data inefficiently when coded using ASCII standard.
\star True
\star False (Page No. 99)

Question No: 103 (Marks: 1) - Please choose one Using ASCII standard the string abacdaacac will be encoded with
$\star 80 \quad$ (Page No. 99)
$\star 160$

* 320
* 100
\qquad bits.

Question No: 104 (Marks: 1) - Please choose one
Using ASCII standard the string abacdaacac will be encoded with 160 bits.
\star True
\star False (Page No. 99)

Question No: 104 (Marks: 1) - Please choose one
Huffman algorithm uses a greedy approach to generate an antefix code T that minimizes the expected length $B(T)$ of the encoded string.

True
\star False (Page No. 102)

Question No: 105 (Marks: 1) - Please choose one
Depth first search is shortest path algorithm that works on un-weighted graphs.
True
False (Page No. 153)

Question No: 106 (Marks: 1) - Please choose one
Floyd-Warshall algorithm is a dynamic programming algorithm; the genius of the algorithm is in the clever recursive formulation of the shortest path problem.

Question No: 107 (Marks: 1) - Please choose one
The term coloring came from the original application which was in map drawing.

```
\(\star\) True (Page No. 176)
```

\star False

Question No: 108 (Marks: 1) - Please choose one
In Knapsack Problem, value and weight both are to be under consideration.
\star True (Page No. 91)
\star False

Question No: 109 (Marks: 1) - Please choose one
Time complexity of DP based algorithm for computing the minimum cost of chain matrix Multiplication is \qquad
$\log n$
$\star \mathrm{n}$
$\star \mathrm{n} 2$
\star n3 (Page No. 90)

Question No: 110 (Marks: 1) - Please choose one
In DP based solution of knapsack problem, to compute entries of V we will imply a/an \qquad approach.

Subjective
\star Inductive (Page No. 93)
\star Brute force
\star Combination

In \qquad based solution of knapsack problem, we consider 2 cases, Leave object Or Take object.
Brute force
\star Dynamic programming (Page No. 93)

Page | 22 Question No: 112 (Marks: 1) - Please choose one
A greedy algorithm sometimes works well for optimization problems.
\star True (Page No. 97)
\star False

Question No: 113 (Marks: 1) - Please choose one
In Huffman encoding, frequency of each character can be determined by parsing the message and \qquad how many times each character (or symbol) appears.
\star Printing
\star Incrementing
\star Counting (Page No. 100)
\star Deleting

Question No: 114 (Marks: 1) - Please choose one
The Huffman codes provide a method of \qquad data efficiently.

* Reading
\star Encoding (Page No. 99)
\star Decoding
\star Printing

Question No: 115 (Marks: 1) - Please choose one Greedy algorithm can do very poorly for some problems.

```
\star True (Page No. 97)
```

\star False

Question No: 116 (Marks: 1) - Please choose one
In the clique cover problem, for two vertices to be in the same group, they must be \qquad each other.

* Apart from
\star Far from
\star Near to
\star Adjacent to (Page No. 176)

Question No: 117 (Marks: 1) - Please choose one

ONLINEVU.BLOGSPOT.COM

CS502 Finalterm Quiz

Semester: Spring 2014
https://www.facebook.com/groups/onlinvu
(Hunain Raza) cyberianstars@gmail.com

Fixed-length codes may not be efficient from the perspective of \qquad the total quantity of data.
Minimizing (Page No. 99)

* Averaging
* Maximizing
* Summing

Question No: 118 (Marks: 1) - Please choose one
In greedy algorithm, at each phase, you take the \qquad you can get right now, without regard for future consequences.

* Minimum
\star Good
\star Best (Page No. 97)

Question No: 119 (Marks: 1) -Please choose one
If a problem is in NP-complete, it must also be in NP.
\star True (Page No. 178)

* False

Question No: 120 (Marks: 1) - Please choose one
If there are n items, there are \qquad possible combinations of the items.
$+2$
$\star \mathrm{n}$
$\star 2^{\wedge} n$ (Page No. 92)

* $3^{\wedge} n$

Question No: 121 (Marks: 1) - Please choose one
Fixed-length codes are known for easy break up of a string into its individual characters.

* True (Page No. 99)
\star False

Question No: 122 (Marks: 1) - Please choose one
In \qquad Knapsack Problem, limitation is that an item can either be put in the bag or not-fractional items are not
allowed.
0

+ 1
\star 0/1 (Page No. 91)

ONLINEVU.BLOGSPOT.COM

Fractional

Question No: 123 (Marks: 1) - Please choose one
Those problems in which Greedy finds good, but not always best is called a greedy \qquad -

* Algorithm
\star Solution
* Heuristic (Page No. 97)
\star Result

Question No: 124 (Marks: 1) - Please choose one
In brute force based solution of knapsack problem, we consider 2 cases, Leave object Or Take object.

* TRUE
\star FALSE (Page No. 97)

Question No: 125 (Marks:1)- Please choose one
What is the solution to the recurrence $T(n)=T(n / 2)+n, T(1)=1$
$\star \mathrm{O}(\operatorname{logn})$
\star O(n) (Page No. 37)

* $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
$\star \mathrm{O}(2 \mathrm{n})$

Question No: 126 (Marks: 1) - Please choose one
The knapsack problem does not belong to the domain of optimization problems.

* True
\star False (Page No. 91)

Question \# 127 (Marks: 1) Please choose one
Counting Money problem is an example which cannot be optimally solved by greedy algorithm.
True (Page No. 97)
False

Question \# 128 (Marks: 1) Please choose one
Huffman algorithm generates an optimum prefix code.
True (Page No. 102)

* False

Question \# 129 (Marks: 1) Please choose one
If the string "Imncde" is coded with ASCII code, the message length would be \qquad bits.

ONLINEVU.BLOGSPOT.COM

```
\star 24
\star 36
* 48 (6*8=48)
\star 60
```

Page | 25

Question \# 130 (Marks: 1) Please choose one
There are \qquad nested loops in DP based algorithm for computing the minimum cost of chain matrix multiplication.
$\star 2$
$\star 3$ (Page No. 90)
$\star 4$
$\star 5$

Question \# 131 (Marks: 1) Please choose one Inductive approach to compute entries of V is implied in \qquad based solution of knapsack problem.
\star Brute force
\star Dynamic programming (Page No. 93)

Question \# 132 (Marks: 1) Please choose one
Suppose that a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is implemented using adjacency lists. What is the complexity of a breadth-first traversal of G?
$\star \mathrm{O}\left(|\vee|^{\wedge} 2\right)$
$\star \mathrm{O}(|\mathrm{V}||E|)$
$\star \mathrm{O}(|\mathrm{V}| \wedge 2|\mathrm{E}|)$
$\star \mathrm{O}(|\mathrm{V}|+|E|)$ (Page No. 116)

Question \# 133 (Marks: 1) Please choose one
Which is true statement?
\star Breadth first search is shortest path algorithm that works on un-weighted graphs (Page No. 153)
\star Depth first search is shortest path algorithm that works on un-weighted graphs.
\star Both of above are true.
\star None of above are true.

Question \# 134 (Marks: 1) Please choose one
Which statement is true?
\star If a dynamic-programming problem satisfies the optimal-substructure property, then a locally optimal solution is globally optimal.

ONLINEVU.BLOGSPOT.COM
\star If a greedy choice property satisfies the optimal-substructure property, then a locally optimal solution is globally optimal.
Both of above
\star None of above

Question \# 135 (Marks: 1) Please choose one
A digraph is strongly connected under what condition?
\star A digraph is strongly connected if for every pair of vertices u, $v e V$, u can reach v.
\star A digraph is strongly connected if for every pair of vertices $u, v e v, u$ can reach v and vice versa. (Page No. 135)

* A digraph is strongly connected if for at least one pair of vertex $u, v e v, u$ can reach v and vice versa.
\star A digraph is strongly connected if at least one third pair of vertices u, $v e v, u$ can reach v and vice versa.

Question \# 136 (Marks: 1) Please choose one
In in-place sorting algorithm is one that uses arrays for storage :
\star An additional array
\star No additional array (Page No. 54)

* Both of above may be true according to algorithm
\star More than 3 arrays of one dimension.

Question \# 137 (Marks: 1) Please choose one In stable sorting algorithm
\star One array is used
\star In which duplicating elements are not handled.
\star More then one arrays are required.

* Duplicating elements remain in same relative position after sorting. (Page No. 54)

Question \# 138 (Marks: 1) Please choose one
Which sorting algorithm is faster :
$\star \mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
\star O(nlogn) (Page No. 46)
$\star \mathrm{O}(\mathrm{n}+\mathrm{k})$
$\star \mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)$

Question \# 139 (Marks: 1) Please choose one
Quick sort is based on divide and conquer paradigm; we divide the problem on base of pivot element and:
There is explicit combine process as well to conquer the solution.
\star No work is needed to combine the sub-arrays, the array is already sorted
\star Merging the sub arrays
\star None of above. (Page No. 51)

Page | 27 Question \# 140 (Marks: 1) Please choose one Dijkstra's algorithm :
\star Has greedy approach to find all shortest paths
\star Has both greedy and Dynamic approach to find all shortest paths
\star Has greedy approach to compute single source shortest paths to all other vertices (Page No. 154)
\star Has both greedy and dynamic approach to compute single source shortest paths to all other vertices.

Question \# 141 (Marks: 1) Please choose one
Which may be stable sort:
\star Bubble sort
\star Insertion sort
\star Both of above (Page No. 54)
\star Selection sort

Question \# 142 (Marks: 1) Please choose one
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \qquad series in the analysis,
\star linear
\star arithmetic
\star geometric (Page No. 37)
\star exponent

Question \# 143 (Marks: 1) Please choose one How much time merge sort takes for an array of numbers?

$\star \mathrm{T}\left(\mathrm{n}^{\wedge} 2\right)$
$\star \mathrm{T}(\mathrm{n}) \quad$ (Page No. 40)
$\star \mathrm{T}(\log \mathrm{n})$
$\star \mathrm{T}(\mathrm{n} \log \mathrm{n})$

Question \# 144 (Marks: 1) Please choose one
Counting sort has time complexity:
$\star \mathrm{O}(\mathrm{n}) \quad$ (Page No. No. 58)
$\star \mathrm{O}(\mathrm{n}+\mathrm{k})$

ONLINEVU.BLOGSPOT.COM

```
\star O(k)
\star O(nlogn)
```

Question \# 145 (Marks: 1) Please choose one
Page | 28 The analysis of Selection algorithm shows the total running time is indeed \qquad in n,
\star arithmetic
\star geometric
\star linear (Page No. 37)
\star orthogonal
Question \# 146 (Marks: 1) Please choose one
Sorting is one of the few problems where provable \qquad bonds exits on how fast we can sort,
\star upper
\star lower (Page No. 39)
\star average
$\star \log n$

Question \# 147 (Marks: 1) Please choose one
In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
$\star \mathrm{T}(\mathrm{n})$
$\star \mathrm{T}(\mathrm{n} / 2)$
$\star \log \mathrm{n}$ (Page No. 37)
$\star \mathrm{n} / 2+\mathrm{n} / 4$

Question \# 148 (Marks: 1) Please choose one
The number of nodes in a complete binary tree of height h is
$\star 2^{\wedge}(h+1)-1 \quad$ (Page No. 40)

* 2 * $(h+1)-1$
* 2 * $(\mathrm{h}+1)$
$\star\left((h+1)^{\wedge} 2\right)-1$

Question \# 149 (Marks: 1) Please choose one
How many elements do we eliminate in each time for the Analysis of Selection algorithm?
$\star \mathrm{n} / 2$ elements (Page No. 37)
$\star(\mathrm{n} / 2)+\mathrm{n}$ elements

* $\mathrm{n} / 4$ elements
* 2 n elements

ONLINEVU.BLOGSPOT.COM

Question \# 150 (Marks: 1) Please choose one
Slow sorting algorithms run in,

```
\(\star T\left(n^{\wedge} 2\right) \quad\) (Page No. 39)
    \(\star \mathrm{T}(\mathrm{n})\)
    \(\star \mathrm{T}(\log \mathrm{n})\)
    \(\star \mathrm{T}(\mathrm{n} \log \mathrm{n})\)
```

Question \# 151 (Marks: 1) Please choose one
An application problem is one in which you want to find, not just a solution, but the \qquad solution.
\star Simple
\star Good (Page No. 113) not sure
\star Best
\star Worst

Question \# 152 (Marks: 1) Please choose one
Counting sort is suitable to sort the elements in range 1 to k :
$\star \mathrm{K}$ is large
$\star K$ is small (Page No. 57)
\star K may be large or small
\star None

Question \# 153 (Marks: 1) Please choose one
Heaps can be stored in arrays without using any pointers; this is due to the \qquad nature of the binary tree,
\star left-complete (Page No. 40)
\star right-complete
\star tree nodes
\star tree leaves

Question \# 154 (Marks: 1) Please choose one
Sieve Technique can be applied to selection problem?
True (Page No. 35)
\star False

Question \# 155 (Marks: 1) Please choose one
A heap is a left-complete binary tree that conforms to the \qquad
\star increasing order only
\star decreasing order only

ONLINEVU.BLOGSPOT.COM

```
\star heap order (Page No. 40)
```

$\star \quad(\log n)$ order

Question \# 156 (Marks: 1) Please choose one
Page | 30 Divide-and-conquer as breaking the problem into a small number of
\star pivot
\star Sieve
\star smaller sub problems (Page No. 34)
\star Selection

Question \# 157 (Marks: 1) Please choose one
In Sieve Technique we do not know which item is of interest

```
\star True (Page No. 34)
\(\star\) False
```

Question \# 158 (Marks: 1) Please choose one
For the heap sort, access to nodes involves simple \qquad operations.
\star arithmetic (Page No. 41)
\star binary
\star algebraic
\star logarithmic

Question \# 159 (Marks: 1) Please choose one For the sieve technique we solve the problem,

```
\star recursively (Page No. 34)
```

\star mathematically
\star precisely
\star accurately

Question \# 160 (Marks: 1) Please choose one
The sieve technique works in \qquad as follows
\star phases (Page No. 34)
\star numbers
\star integers
\star routines

Question \# 161 (Marks: 1) Please choose one

ONLINEVU.BLOGSPOT.COM

A (an) \qquad is a left-complete binary tree that conforms to the heap order
\star heap (Page No. 40)
\star binary tree
\star binary search tree
Page | 31 array

Question \# 162 (Marks: 1) Please choose one
The sieve technique is a special case, where the number of sub problems is just

Question \# 163 (Marks: 1) Please choose one
Analysis of Selection algorithm ends up with,
$\star \mathrm{T}(\mathrm{n})$
$\star \mathrm{T}(1 / 1+\mathrm{n})$
$\star \mathrm{T}(\mathrm{n} / 2)$
$\star T((n / 2)+n)($ Page No. 37)
Question \# 164 (Marks: 1) Please choose one For the heap sort we store the tree nodes in
\star level-order traversal (Page No. 40)
\star in-order traversal
\star pre-order traversal
\star post-order traversal

Question \# 165 (Marks: 1) Please choose one
The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,
\star divide-and-conquer (Page No. 34)
\star decrease and conquer
\star greedy nature
\star 2-dimension Maxima

Question \# 166 (Marks: 1) Please choose one
Theta asymptotic notation for $\mathrm{T}(\mathrm{n})$:
\star Set of functions described by: $\mathrm{c} 1 \mathrm{~g}(\mathrm{n})$ Set of functions described by $\mathrm{c} 1 \mathrm{~g}(\mathrm{n})>=\mathrm{f}(\mathrm{n})$ for c 1 s

ONLINEVU.BLOGSPOT.COM

CS502 Finalterm Quiz

Semester: Spring 2014
https://www.facebook.com/groups/onlinvu
(Hunain Raza) cyberianstars@gmail.com

Theta for $T(n)$ is actually upper and worst case comp
\star Set of functions described by:
$\star \operatorname{clg}(\mathrm{n})$

Page | 32 Question \# 167 (Marks: 1) Please choose one Sieve Technique applies to problems where we are interested in finding a single item from a larger set of

Question \# 171 (Marks: 1) Please choose one
Continuation sort is suitable to sort the elements in range 1 to k

* K is Large
$\star \mathrm{K}$ is not known
\star K may be small or large
\star K is small (Page No. 57)

Page | 33 Question \# 172 (Marks: 1) Please choose one Which may be a stable sort?
\star Merger
\star Insertion
\star Both above (Page No. 54)
\star None of the above

Question \# 173 (Marks: 1) Please choose one An in place sorting algorithm is one that uses \qquad arrays for storage

* Two dimensional arrays
\star More than one array
\star No Additional Array (Page No. 54)
\star None of the above

Question \# 174 (Marks: 1) Please choose one single item from a larger set of \qquad
\star nitems (Page No. 34)
\star phases
\star pointers
\star vconstant

Question \# 175 (Marks: 1) Please choose one For the Sieve Technique we take time
\star T(nk) (Page No. 34)
$\star \mathrm{T}(\mathrm{n} / 3)$
$\star \mathrm{n}^{\wedge} 2$
$\star \mathrm{n} / 3$

Question \# 176 (Marks: 1) Please choose one One Example of in place but not stable sort is
\star Quick (Page No. 54)
\star Heap
\star Merge

ONLINEVU.BLOGSPOT.COM

Bubble

Question No: 177 (Marks: 1) - Please choose one
Due to left complete nature of binary tree, the heap can be stored in

Page | 34

Arrays (Page No. 40)
\star Structures
\star Link Lis
\star Stack

Question No: 178 (Marks: 1) - Please choose one
What type of instructions Random Access Machine (RAM) can execute?
\star Algebraic and logic
\star Geometric and arithmetic
\star Arithmetic and logic (Page No. 10)
\star Parallel and recursive

Question No: 179 (Marks: 1) - Please choose one
What is the total time to heapify?
$\star \mathrm{O}(\log \mathrm{n})$ (Page No. 43)
$\star \quad \mathrm{O}(\mathrm{n} \log \mathrm{n})$
$\star \mathrm{O}(\mathrm{n} 2 \log \mathrm{n})$
$\star \mathrm{O}(\log 2 \mathrm{n})$

Question No: 180 (Marks: 1) - Please choose one Is it possible to sort without making comparisons?
\star Yes (Page No. 57)
\star No

Question No: 181 (Marks: 1) - Please choose one
When we call heapify then at each level the comparison performed takes time

```
\star It will take O (1) (Page No. 43)
```

\star Time will vary according to the nature of input data
\star It can not be predicted
\star It will take $\Theta(\log n)$

Question No: 182 (Marks: 1) - Please choose one
In Quick sort, we don't have the control over the sizes of recursive calls

ONLINEVU.BLOGSPOT.COM

```
\star True (Page No. 40)
\star False
\star Less information to decide
\star Either true or false
```

Page | 35

Question No: 183 (Marks: 1) - Please choose one
For Chain Matrix Multiplication we can not use divide and conquer approach because,
\star We do not know the optimum $k \quad$ (Page No. 86)
\star We use divide and conquer for sorting only
\star We can easily perform it in linear time
\star Size of data is not given
Question No: 184 (Marks: 1) - Please choose one
The Knapsack problem belongs to the domain of \qquad problems.
\star Optimization (Page No. 91)
\star NP Complete
\star Linear Solution
\star Sorting

Question No: 185 (Marks: 1) - Please choose one
Mergesort is a stable algorithm but not an in-place algorithm.
\star True (Page No. 54)
\star false

Question No: 186 (Marks: 1) - Please choose one
Counting sort the numbers to be sorted are in the range 1 to k where k is small.
\star True (Page No. 57)
\star False

Question No: 187 (Marks: 1) - Please choose one
In selection algorithm, because we eliminate a constant fraction of the array with each phase, we get the
\star Convergent geometric series (Page No. 37)

* Divergent geometric series
\star None of these

Question No: 188 (Marks: 1) - Please choose one
In RAM model instructions are executed

ONLINEVU.BLOGSPOT.COM

```
\star One after another (Page No. 10)
* Parallel
\star Concurrent
\star Random
```

Page | 36

Question No: 190 (Marks: 1) - Please choose one
If the indices passed to merge sort algorithm are not equal, the algorithm may return immediately.
\star True
\star False (Page No. 28)

Question No: 191 (Marks: 1) - Please choose one
Brute-force algorithm uses no intelligence in pruning out decisions.
\star True (Page No. 18)
\star False

Question No: 192 (Marks: 1) - Please choose one
In analysis, the Upper Bound means the function grows asymptotically no faster than its largest term.
\star True (Page No. 24)
\star False

Question No: 193 (Marks: 1) - Please choose one
For small values of n, any algorithm is fast enough. Running time does become an issue when n gets large.
\star True (Page No. 14)
\star Fast

Question No: 194 (Marks: 1) - Please choose one
The ancient Roman politicians understood an important principle of good algorithm design that is plan-sweep algorithm.

\star True
\star False (Page No. 27) [Divide and Conquer]

Question No: 195 (Marks: 1) - Please choose one
In 2d-space a point is said to be \qquad if it is not dominated by any other point in that space.
\star Member

* Minimal
\star Maximal (Page No. 11)
\star Joint

ONLINEVU.BLOGSPOT.COM

Question No: 196 (Marks: 1) - Please choose one

An algorithm is a mathematical entity that is dependent on a specific programming language.
True
False (Page No. 7)

Question No: 197 (Marks: 1) - Please choose one
The running time of an algorithm would not depend upon the optimization by the compiler but that of an implementation of the algorithm would depend on it.
\star True (Page No. 13)
\star False

Question No: 198 (Marks: 1) -Please choose one
$F(n)$ and $g(n)$ are asymptotically equivalent. This means that they have essentially the same \qquad for large n .
\star Results
\star Variables
\star Size
\star Growth rates (Page No. 23)

Question No: 199 (Marks: 1) - Please choose one
$8 n 2+2 n-3$ will eventually exceed $c 2^{*}(n)$ no matter how large we make $c 2$.

```
* True (Page No. 25)
* False
```

Question No: 200 (Marks: 1) - Please choose one
If we associate (x, y) integers pair to cars where x is the speed of the car and y is the negation of the price. High y
value for a car means a \qquad car.
\star Fast

* Slow
\star Expensive
\star Cheap (Page No. 11)

Question No: 201 (Marks: 1) - Please choose one
The function $f(n)=n(\log n+1) / 2$ is asymptotically equivalent to $n \log n$. Here Upper Bound means the function $f(n)$ grows asymptotically \qquad faster than $\mathrm{n} \log \mathrm{n}$.
More
$+$
Quiet

ONLINEVU.BLOGSPOT.COM

```
* Not (Page No. 24)
\star At least
```

Question No: 202 (Marks: 1) - Please choose one
Page | 38 After sorting in merge sort algorithm, merging process is invoked.
\star True (Page No. 28)
\star False

Question No: 203 (Marks: 1) - Please choose one
Asymptotic growth rate of the function is taken over \qquad case running time.
\star Best

* Average
* Worst (Page No. 14)
* Normal

Question No: 204 (Marks: 1) - Please choose one
In analysis of $f(n)=n(n / 5)+n-10 \log n, f(n)$ is asymptotically equivalent to \qquad .
$\star \mathrm{n}$
$\star 2 n$
$\star \mathrm{n}+1$
\star n2 (Page No. 23)

Question No: 205 (Marks: 1) - Please choose one Algorithm is concerned with.......issues.

* Macro
\star Micro
\star Both Macro \& Micro (Page No. 8)
* Normal

Question No: 206 (Marks: 1) - Please choose one
We cannot make any significant improvement in the running time which is better than that of brute-force algorithm.

True
\star False (Page No. 18)

Question No: 207 (Marks: 1) - Please choose one

ONLINEVU.BLOGSPOT.COM

In addition to passing in the array itself to Merge Sort algorithm, we will pass in \qquad other arguments which are indices.
\star Two (Page No. 28)
\star Three
\star Four
\star Five

Question No: 208 (Marks: 1) - Please choose one
In analysis, the Lower Bound means the function grows asymptotically at least as fast as its largest term.

Efficient algorithm requires less computational.......

* Memory
* Running Time
\star Memory and Running Time (Page No. 9)
\star Energy

Question No: 210 (Marks: 1) - Please choose one
The O-notation is used to state only the asymptotic \qquad bounds.

* Two
* Lower
\star Upper (Page No. 25)
\star Both lower \& upper

Question No: 211 (Marks: 1) - Please choose one
For the worst-case running time analysis, the nested loop structure containing one "for" and one "while" loop, might be expressed as a pair of \qquad nested summations.
$\star 1$
$\star 2$ (Page No. 16)

+ 3
$+4$

Question No: 212 (Marks: 1) - Please choose one
Before sweeping a vertical line in plane sweep approach, in start sorting of the points is done in increasing order of their \qquad coordinates.

ONLINEVU.BLOGSPOT.COM

Question No: 213 (Marks: 1) - Please choose one
Brute-force algorithm for 2D-Maxima is operated by comparing \qquad pairs of points.
\star Two
\star Some
\star Most
\star All (Page No. 18)
Question No: 214 (Marks: 1) - Please choose one
The function $f(n)=n(\log n+1) / 2$ is asymptotically equivalent to $n \log n$. Here Lower Bound means function $f(n)$ grows asymptotically at \qquad as fast as nlog n.

* Normal
\star Least (Page No. 23)
\star Most
\star All

Question No: 215 (Marks: 1) - Please choose one
In plane sweep approach, a vertical line is swept across the 2d-plane and \qquad structure is used for holding the maximal points lying to the left of the sweep line.
\star Array
\star Queue
\star Stack (Page No. 18)
\star Tree

Question No: 216 (Marks: 1) - Please choose one
Algorithm analysts know for sure about efficient solutions for NP-complete problems.
True
\star False (Page No. 9)

Question No: 217 (Marks: 1) - Please choose one
The sieve technique works where we have to find \qquad item(s) from a large input.
\star Single (Page No. 34)
\star Two

Three
\star Similar

Question No: 218 (Marks: 1) - Please choose one
Page | 41 In which order we can sort?

* increasing order only
* decreasing order only
\star increasing order or decreasing order (Page No. 39)
\star both at the same time

Question No: 219 (Marks: 1) - Please choose one
Memoization is?

* To store previous results for future use
* To avoid this unnecessary repetitions by writing down the results of recursive calls and looking them up again if we need them later (Page No. 74)
* To make the process accurate
* None of the above

Question No: 220 (Marks: 1) - Please choose one
In place stable sorting algorithm.
\star If duplicate elements remain in the same relative position after sorting (Page No. 54)

* One array is used
* More than one arrays are required
* Duplicating elements not handled

Question No: 221 (Marks: 1) - Please choose one
The running time of quick sort depends heavily on the selection of
\star No of inputs

* Arrangement of elements in array
* Size o elements
\star Pivot elements (Page No. 49)

Question No: 222 (Marks: 1) - Please choose one
A point p in 2-dimensional space is usually given by its integer coordinate(s) \qquad
\star p.x only

* p.y only
\star p.x\&p.z

ONLINEVU.BLOGSPOT.COM
\star p.x \& p.y (Page No. 10)

Question No: 223 (Marks: 1) - Please choose one
In \qquad we have to find rank of an element from given input.
\star Merge sort algorithm
\star Selection problem (Page No. 34)
\star Brute force technique
\star Plane Sweep algorithm

Question No: 224 (Marks: 1) - Please choose one
A RAM is an idealized algorithm with takes an infinitely large random-access memory.
\star True
\star False (Page No. 10)

Question No: 225 (Marks: 1) -Please choose one
\qquad is one of the few problems, where provable lower bounds exist on how fast we can sort.

Question No: 226 (Marks: 1) - Please choose one
Floor and ceiling are \qquad to calculate while analyzing algorithms.
\star Very easy
\star Usually considered difficult (Page No. 31)

Question No: 227 (Marks: 1) - Please choose one
In Heap Sort algorithm, the maximum levels an element can move upward is


```
    Theta (log n) (Page No. 43)
```

\star Order $(\log n)$
\star Omega (logn)
\star O (1) i.e. Constant time

Question No: 228 (Marks: 1) - Please choose one
In Heap Sort algorithm, the total running time for Heapify procedure is \qquad _

```
    *Theta (log n) (Page No. 43)
\star Order (logn)
```

ONLINEVU.BLOGSPOT.COM

Omega (log n)
\star O (1) i.e. Constant time

Question No: 229 (Marks: 1) - Please choose one
Page | 43 Algorithm is a mathematical entity, which is independent of a specific machine and operating system.
\star True
\star False (Page No. 7)

Question No: 230 (Marks: 1) - Please choose one
While Sorting, the ordered domain means for any two input elements x and y \qquad satisfies only.

\star All of the above (Page No. 39)

Question No: 231 (Marks: 1) -Please choose one
Quick sort is best from the perspective of Locality of reference.

```
\star True (Page No. 9)
```

\star False

Question No: 232 (Marks: 1) - Please choose one In Heap Sort algorithm, we build \qquad for ascending sort.
\star Max heap (Page No. 41)
\star Min heap

Question No: 233 (Marks: 1) - Please choose one In Sieve Technique, we know the item of interest.

True
\star False (Page No. 34)

Question No: 234 (Marks: 1) - Please choose one
While solving Selection problem, in Sieve technique we partition input data \qquad

* In increasing order
\star In decreasing order
\star According to Pivot (Page No. 35)
* Randomly

ONLINEVU.BLOGSPOT.COM

Question No: 235 (Marks: 1) - Please choose one In pseudo code, the level of details depends on intended audience of the algorithm.

```
* True (Page No. 12)
* False
```

Question No: 236 (Marks: 1) - Please choose one
If the indices passed to merge sort algorithm are \qquad ,then this means that there is only one element to sort.

* Small
* Large
\star Equal (Page No. 28)
\star Not Equal

Question No: 237 (Marks: 1) - Please choose one
Can an adjacency matrix for a directed graph ever not be square in shape?
$\star \mathrm{Yes}$
+No

Question \# 238 (Marks: 1) Please choose one
In Quick sort algorithm, constants hidden in $T(n \lg n)$ are

* Large
\star Medium
\star Not known
\star Small

Question \# 239 (Marks: 1) Please choose one
If you find yourself in maze the better traversal approach will be :

BFS

\star BFS and DFS both are valid
\star Level order
\star DFS

Question \# 240 (Marks: 1) Please choose one
What general property of the list indicates that the graph has an isolated vertex?
There is Null pointer at the end of list.

* The Isolated vertex is not handled in list.
* Only one value is entered in the list.
\star There is at least one null list.

Question No: 241 (Marks: 1) - Please choose one
Consider the following Huffman Tree The binary code for the string TEA is

```
        1000010
```

* 01100010
- 1000110
* 1110110

Question No: 242 (Marks: 1) - Please choose one
Who invented Quick sort procedure?

\star Sedgewick
\star Mellroy
\star Coreman

Question No: 243 (Marks: 1) - Please choose one
The Huffman algorithm finds a polynomial solution
\star True
\star False

Question No: 244 (Marks: 1) - Please choose one
The Huffman algorithm finds an exponential solution
\star True
\star False

Question No: 245 (Marks: 1) - Please choose one
The Huffman algorithm finds a (n) \qquad solution.
\star Optimal

* Non-optimal
* Exponential
* Polynomial

Question No: 246 (Marks: 1) - Please choose one
Maximum number of vertices in a Directed Graph may be |V2|
True
\star False

ONLINEVU.BLOGSPOT.COM

Question No: 246 (Marks: 1) - Please choose one
If a graph has v vertices and e edges then to obtain a spanning tree we have to delete
\star vedges.
$\star \mathrm{v}-\mathrm{e}+5$ edges
$\star \mathrm{v}+\mathrm{e}$ edges.

* None of these

Question No: 247 (Marks: 1) - Please choose one
What is generally true of Adjacency List and Adjacency Matrix representations of graphs?
\star Lists require less space than matrices but take longer to find the weight of an edge ($\mathrm{v} 1, \mathrm{v} 2$)

* Lists require less space than matrices and they are faster to find the weight of an edge ($\mathrm{v} 1, \mathrm{v} 2$)
\star Lists require more space than matrices and they take longer to find the weight of an edge (v1,v2)
\star Lists require more space than matrices but are faster to find the weight of an edge (v1,v2)

Question No: 248 (Marks: 1) - Please choose one
Although it requires more complicated data structures, Prim's algorithm for a minimum spanning tree is better than Kruskal's when the graph has a large number of vertices.

* True
* False

Question \# 249 (Marks: 1) Please choose one A dense undirected graph is:
\star A graph in which $E=O\left(V^{\wedge} 2\right)$
\star A graph in which $E=O(V)$
\star A graph in which $\mathrm{E}=\mathrm{O}(\log \mathrm{V})$

* All items above may be used to characterize a dense undirected graph

Question \# 250 (Marks: 1) Please choose one

The recurrence relation of Tower of Hanoi is given below $T(n)=\{1$ if $n=1$ and $2 T(n-1)$ if $n>1$ In order to move a tower of 5 rings from one peg to another, how many ring moves are required?

+ 16
+ 10
+ 32
+31

Question \# 251 (Marks: 1) Please choose one
Continuing sort has time complexity of ?

```
* O(n)
* O(n+k)
\star O(nlogn)
\star O(k)
```

Page | 47

Question No: 252 (Marks: 1) - Please choose one
If there are $\Theta(\mathrm{n} 2)$ entries in edit distance matrix then the total running time is
$\star \quad \Theta(1)$
\star O(n2)
$\star \theta(n)$
$\star \theta(n \log n)$
Question No: 253 (Marks: 1) - Please choose one
In Quick Sort Constants hidden in $\mathrm{T}(\mathrm{n} \log \mathrm{n})$ are
\star Large
\star Medium
\star Small
\star Not Known

Question No: 254 (Marks: 1) - Please choose one
Merge sort makes two recursive calls. Which statement is true after these recursive calls finish, but before the merge step?

* The array elements form a heap
\star Elements in each half of the array are sorted amongst themselves
\star Elements in the first half of the array are less than or equal to elements in the second half of the array
\star None of the above

Question No: 255 (Marks: 1) - Please choose one

In Heap Sort algorithm, if heap property is violated \qquad
\star We call Build heap procedure
\star We call Heapify procedure
\star We ignore
\star Heap property can never be violated

Question \# 256 (Marks: 1) Please choose one
Consider the following Algorithm:
Factorial (n)\{
https://www.facebook.com/groups/onlinvu

```
if ( }n=1\mathrm{ )
        return 1
else
        return (n * Factorial(n-1))
```

Page | 48 \}
Recurrence for the following algorithm is:
$\star T(n)=T(n-1)+1$
$\star T(n)=n T(n-1)+1$
$\star T(n)=T(n-1)+n$
$\star T(n)=T(n(n-1))+1$

Question No: 257 (Marks: 1) - Please choose one Consider the following code:

```
For(j=1; j<n;j++)
    For(k=1; k<15;k++)
    For(l=5; l<n; l++)
    {
            Do_something_constant();
        }
```

 What is the order of execution for this code.
 \(\star \mathrm{O}(\mathrm{n})\)
 \(\star \mathrm{O}(\mathrm{n} 3)\)
 \(\star \mathrm{O}(\mathrm{n} 2 \log \mathrm{n})\)
 \(\star \mathrm{O}(\mathrm{n} 2)\)