Muhammad Usama and DUA sister

CS502 - Fundamentals of Algorithms Quiz No. 1 12-11-2012

Question \# 1 of 10 (Start time: 06:18:58 PM) Total Marks: 1
We do sorting to,
Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order
Question \# 2 of 10 (Start time: 06:19:38 PM) Total Marks: 1
Heaps can be stored in arrays without using any pointers; this is due to the \qquad nature of the binary tree,
Select correct option:

left-complete

right-complete
tree nodes
tree leaves

Question \# 3 of 10 (Start time: 06:20:18 PM) Total Marks: 1
Sieve Technique can be applied to selection problem?
Select correct option:

True

False

Question \# 4 of 10 (Start time: 06:21:10 PM) Total Marks: 1
A heap is a left-complete binary tree that conforms to the \qquad
Select correct option:
increasing order only
decreasing order only
heap order
$(\log n)$ order
Question \# 5 of 10 (Start time: 06:21:39 PM) Total Marks: 1

Muhammad Usama and DUA sister

A (an) \qquad is a left-complete binary tree that conforms to the heap order
Select correct option:

heap

binary tree
binary search tree
array

Question \# 6 of 10 (Start time: 06:22:04 PM) Total Marks: 1
Divide-and-conquer as breaking the problem into a small number of Select correct option:
pivot
Sieve
smaller sub problems
Selection

Question \# 7 of 10 (Start time: 06:22:40 PM) Total Marks: 1
In Sieve Technique we do not know which item is of interest
Select correct option:

True

False

Question \# 8 of 10 (Start time: 06:23:26 PM) Total Marks: 1
The recurrence relation of Tower of Hanoi is given below $T(n)=\{1$ if $n=1$ and $2 T(n-1)$ if $n>1 \ln$ order to move a tower of 5 rings from one peg to another, how many ring moves are required? Select correct option:

16
10
32
31

Question \# 9 of 10 (Start time: 06:24:44 PM) Total Marks: 1
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \qquad series in the analysis,
Select correct option:
linear
arithmetic
geometric
exponent

Made by

Muhammad Usama and DUA sister

Question \# 10 of 10 (Start time: 06:25:43 PM) Total Marks: 1
For the heap sort, access to nodes involves simple \qquad operations.
Select correct option:
arithmetic
binary
algebraic
logarithmic

For the sieve technique we solve the problem,
Select correct option:
recursively
mathematically
precisely
accurately
The sieve technique works in \qquad as follows
Select correct option:
phases
numbers
integers
routines
Slow sorting algorithms run in,
Select correct option:
$T\left(n^{\wedge} 2\right)$
T(n)
$T(\log n)$
A (an) \qquad is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \qquad series in the analysis,
Select correct option:
linear
arithmetic
geometric
exponent

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
Select correct option:

Made by

Muhammad Usama and DUA sister

T(n)
$T(n / 2)$
$\log n$
n/2+n/4

The sieve technique is a special case, where the number of sub problems is just Select correct option:

5
many
1
few

In which order we can sort?
Select correct option:
increasing order only
decreasing order only
increasing order or decreasing order
both at the same time

The recurrence relation of Tower of Hanoi is given below $T(n)=\{1$ if $n=1$ and $2 T(n-1)$ if $n>1 \ln$ order to move a tower of 5 rings from one peg to another, how many ring moves are required? Select correct option:
16
10
32
31

Analysis of Selection algorithm ends up with,
Select correct option:
T(n)
$\mathrm{T}(1 / 1+\mathrm{n})$
$T(n / 2)$
$T((n / 2)+n)$

We do sorting to, Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

Muhammad Usama and DUA sister

Divide-and-conquer as breaking the problem into a small number of Select correct option:
pivot
Sieve
smaller sub problems
Selection

The analysis of Selection algorithm shows the total running time is indeed \qquad in n, Select correct option:
arithmetic
geometric
linear
orthogonal

How many elements do we eliminate in each time for the Analysis of Selection algorithm? Select correct option:
n / 2 elements
($\mathrm{n} / 2$) +n elements
$\mathrm{n} / 4$ elements
$2 n$ elements

Sieve Technique can be applied to selection problem?
Select correct option:

True
false

For the heap sort we store the tree nodes in Select correct option:
level-order traversal
in-order traversal

Muhammad Usama and DUA sister

pre-order traversal
post-order traversal

One of the clever aspects of heaps is that they can be stored in arrays without using any
Select correct option:
pointers
constants
variables
functions

A (an) \qquad is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array

Divide-and-conquer as breaking the problem into a small number of
Select correct option:
pivot
Sieve
smaller sub problems
Selection

Heaps can be stored in arrays without using any pointers; this is due to the \qquad nature of the binary tree,
Select correct option:
left-complete
right-complete
tree nodes
tree leaves

For the sieve technique we solve the problem,
Select correct option:
recursively
mathematically
precisely
accurately

A heap is a left-complete binary tree that conforms to the \qquad
Select correct option:

Muhammad Usama and DUA sister

increasing order only
decreasing order only
heap order
($\log \mathrm{n}$) order

We do sorting to, Select correct option: keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

How many elements do we eliminate in each time for the Analysis of Selection algorithm?
Select correct option:
n / 2 elements
($n / 2$) $+n$ elements
$n / 4$ elements
2 n elements

How much time merge sort takes for an array of numbers?
Select correct option:
$T\left(n^{\wedge} 2\right)$
$T(n)$
$T(\log n)$
$T(n \log n)$

The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of, Select correct option:
divide-and-conquer
decrease and conquer
greedy nature
2-dimension Maxima

Question \# 1 of 10 (Start time: 08:17:23 AM) Total M a r k s: 1
The number of nodes in a complete binary tree of height h is
Select correct option:
$2^{\wedge}(\mathrm{h}+1)$ - 1
2 * $(\mathrm{h}+1)-1$

Made by

Muhammad Usama and DUA sister

2 * (h+1)
$\left((h+1)^{\wedge} 2\right)-1$
Question \# 2 of 10 (Start time: 08:18:46 AM) Total M a r k s: 1
A (an) \qquad is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array
Question \# 3 of 10 (Start time: 08:19:38 AM) Total M a r k s: 1
In Sieve Technique we do not know which item is of interest
Select correct option:

True

False
Question \# 4 of 10 (Start time: 08:20:33 AM) Total M a r k s: 1
Heaps can be stored in arrays without using any pointers; this is due to the nature of the binary tree,
Select correct option:
left-complete
right-complete
tree nodes
tree leaves

Question \# 5 of 10 (Start time: 08:21:59 AM) Total M a rks: 1
In the analysis of Selection algorithm, we make a number of passes, in fact it could be as
many as,
Select correct option:
T(n)
$T(n / 2)$
$\log n$
n/2+n/4

Question \# 6 of 10 (Start time: 08:23:01 AM) Total M a r k s: 1
For the sieve technique we solve the problem,
Select correct option:
recursively
mathematically
precisely
accurately
Theta asymptotic notation for $T(n)$:
Select correct option:
Set of functions described by: c1g(n)Set of functions described by c1g(n)>=f(n) for c1 s

Muhammad Usama and DUA sister

Theta for $\mathrm{T}(\mathrm{n})$ is actually upper and worst case comp
Set of functions described by:
c1g(n)

Question \# 8 of 10 (Start time: 08:24:39 AM) Total M a r k s: 1
The sieve technique is a special case, where the number of sub problems is just Select correct option:
5
many
1
few
Question \# 9 of 10 (Start time: 08:25:54 AM) Total M a r k s: 1
Sieve Technique applies to problems where we are interested in finding a single item from a larger set of \qquad Select correct option:

n items

phases
pointers
constant

Question \# 10 of 10 (Start time: 08:26:44 AM) Total M a r k s: 1
The sieve technique works in \qquad as follows
Select correct option:
phases
numbers
integers
routines

Memorization is?

To store previous results for future use
To avoid this unnecessary repetitions by writing down the results of recursive calls and looking them up again if we need them later
To make the process accurate
None of the above

Question \# 2 of 10 Total M a r k s: 1
Which sorting algorithm is faster
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$
$0 n^{\wedge} 2$
0 ($n+k$)
0 n^3

Quick sort is
Stable \& in place
Not stable but in place

Muhammad Usama and DUA sister

Stable but not in place
Some time stable \& some times in place

One example of in place but not stable algorithm is
Merger Sort
Quick Sort
Continuation Sort
Bubble Sort

In Quick Sort Constants hidden in $\mathrm{T}(\mathrm{n} \log \mathrm{n})$ are
Large
Medium
Small
Not Known

Continuation sort is suitable to sort the elements in range 1 to k
K is Large
K is not known
K may be small or large
K is small

In stable sorting algorithm.
If duplicate elements remain in the same relative position after sorting
One array is used
More than one arrays are required
Duplicating elements not handled
Which may be a stable sort?
Merger
Insertion
Both above
None of the above

An in place sorting algorithm is one that uses \qquad arrays for storage
Two dimensional arrays
More than one array
No Additional Array
None of the above

Continuing sort has time complexity of ?
O(n)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
O(nlogn)
$\mathrm{O}(\mathrm{k})$

Muhammad Usama and DUA sister

We do sorting to,
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

In Sieve Technique we donot know which item is of interest

True

False
A (an) \qquad is a left-complete binary tree that conforms to the heap order
heap
binary tree
binary search tree
array
27. The sieve technique works in \qquad as follows
phases
numbers
integers
routines
For the sieve technique we solve the problem,
recursively
mathematically
precisely
accurately
29. For the heap sort, access to nodes involves simple \qquad operations.
arithmetic
binary
algebraic
logarithmic

The analysis of Selection algorithm shows the total running time is indeed \qquad in n, \backslash
arithmetic
geometric
linear
orthogonal

Muhammad Usama and DUA sister

For the heap sort, access to nodes involves simple \qquad operations.
Select correct option:
arithmetic
binary
algebraic
logarithmic

Sieve Technique applies to problems where we are interested in finding a single item from a larger set of \qquad
Select correct option:

n items

phases
pointers
constant

Question \# 9 of 10 (Start time: 07:45:36 AM) Total Marks: 1
In Sieve Technique we do not know which item is of interest
Select correct option:
True
False

How much time merge sort takes for an array of numbers?
Select correct option:
$T\left(n^{\wedge} 2\right)$
T(n)
$T(\log n)$
$T(n \log n)$
For the heap sort we store the tree nodes in
Select correct option:
level-order traversal
in-order traversal
pre-order traversal
post-order traversal

Sorting is one of the few problems where provable \qquad bonds exits on how fast we can sort,
Select correct option:
upper
lower
average

Muhammad Usama and DUA sister

$\log n$
single item from a larger set of \qquad
Select correct option:
n items
phases
pointers
constant

A heap is a left-complete binary tree that conforms to the \qquad
Select correct option:
increasing order only
decreasing order only
heap order
($\log \mathrm{n}$) order
In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
Select correct option:
$T(n)$
$T(n / 2)$
$\log n$
$\mathrm{n} / 2+\mathrm{n} / 4$
The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of, Select correct option:
divide-and-conquer
decrease and conquer
greedy nature
2-dimension Maxima

The sieve technique works in \qquad as follows
Select correct option:
phases
numbers
integers
routines
For the Sieve Technique we take time
Select correct option:
T(nk)
T(n/3)
$\mathrm{n}^{\wedge} 2$
n/3

Muhammad Usama and DUA sister

In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \qquad series in the analysis,
linear
arithmetic
geometric
exponent

Analysis of Selection algorithm ends up with, Select correct option:
$T(n)$
$\mathrm{T}(1 / 1+\mathrm{n})$
$\mathrm{T}(\mathrm{n} / 2)$
$T((n / 2)+n)$
Quiz Start Time: 07:23 PM
Time Left 90
$\mathrm{sec}(\mathrm{s})$
Question \# 1 of 10 (Start time: 07:24:03 PM) Total M a r k s: 1
In in-place sorting algorithm is one that uses arrays for storage :
Select correct option:
An additional array
No additioanal array
Both of above may be true according to algorithm
More than 3 arrays of one dimension.

Time Left 89
sec(s)
Question \# 2 of 10 (Start time: 07:25:20 PM) Total M a r k s: 1
Which sorting algorithn is faster :
Select correct option:
$\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
O(nlogn)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
$\mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)$
In stable sorting algorithm:
Select correct option:
One array is used
In whcih duplicating elements are not handled.
More then one arrays are required.
Duplicating elements remain in same relative posistion after sorting.

Muhammad Usama and DUA sister

Counting sort has time complexity:
Select correct option:
O(n)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
O(k)
O(nlogn)

Counting sort is suitable to sort the elements in range 1 to k :
Select correct option:
K is large
K is small
K may be large or small
None

Memorization is :
Select correct option:
To store previous results for further use.
To avoid unnecessary repetitions by writing down the results of recursive calls and looking them again if needed later
To make the process accurate.
None of the above

The running time of quick sort depends heavily on the selection of Select correct option:
No of inputs
Arrangement of elements in array
Size o elements
Pivot elements

Which may be stable sort:
Select correct option:
Bubble sort
Insertion sort
Both of above

In Quick sort algorithm, constants hidden in $\mathrm{T}(\mathrm{n} \lg \mathrm{n})$ are
Select correct option:
Large
Medium

Made by

Muhammad Usama and DUA sister

Not known
small

Quick sort is
Select correct option:
Stable and In place
Not stable but in place
Stable and not in place
Some time in place and send some time stable

For the Sieve Technique we take time
T(nk)
$T(n / 3)$
$\mathrm{n}^{\wedge} 2$
n/3

The sieve technique is a special case, where the number of sub problems is just Select correct option:
5
Many
1
Few

The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,
Select correct option:
divide-and-conquer
decrease and conquer
greedy nature
2-dimension Maxima

Which may be stable sort:
Select correct option:
Bubble sort
Insertion sort
Both of above
Selection sort
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \qquad series in the analysis, Select correct option:
linear
arithmetic

Made by

Muhammad Usama and DUA sister

geometric
exponent

In Quick sort algorithm, constants hidden in $\mathrm{T}(\mathrm{n} \lg \mathrm{n})$ are Select correct option:

Large
Medium
Not known
small

How much time merge sort takes for an array of numbers?
Select correct option:
$T\left(n^{\wedge} 2\right)$
T(n)
$T(\log n)$
$T(n \log n)$

Counting sort has time complexity:
Select correct option:
$\mathrm{O}(\mathrm{n})$
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
O(k)
O(nlogn)

In which order we can sort?
Select correct option:
increasing order only
decreasing order only
increasing order or decreasing order
both at the same time

A (an) \qquad is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree

Muhammad Usama and DUA sister

binary search tree
array

The analysis of Selection algorithm shows the total running time is indeed \qquad in n, Select correct option:
arithmetic
geometric
linear
orthogonal

Quick sort is based on divide and conquer paradigm; we divide the problem on base of pivot element and:
Select correct option:

There is explicit combine process as well to conquer the solution.
No work is needed to combine the sub-arrays, the array is already sorted
Merging the sub arrays
None of above.

Sorting is one of the few problems where provable \qquad bonds exits on how fast we can sort,
Select correct option:
upper
lower
average
$\log n$
In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
T(n)
$T(n / 2)$
$\log n$
n/2+n/4

Quick sort is based on divide and conquer paradigm; we divide the problem on base of pivot element and:
There is explicit combine process as w ell to conquer
No w ork is needed to combine the sub-arrays, the a
Merging the subarrays

Muhammad Usama and DUA sister

None of above

The number of nodes in a complete binary tree of height h is
$2^{\wedge}(h+1)-1$
2 * $(\mathrm{h}+1)-1$
2 * $(h+1)$
$\left((h+1)^{\wedge} 2\right)-1$

How many elements do we eliminate in each time for the Analysis of Selection algorithm?
$\mathrm{n} / 2$ elements
($n / 2$) $+n$ elements
$\mathrm{n} / 4$ elements
2 n elements

Which sorting algorithn is faster :
$\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
O(nlogn)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
$O\left(n^{\wedge} 3\right)$
We do sorting to,
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order
Slow sorting algorithms run in,
$T\left(n^{\wedge} 2\right)$
$T(n)$
$T(\log n)$
$T(n \log n)$

One of the clever aspects of heaps is that they can be stored in arrays without using any

Pointers

Constants
Variables
Functions
Counting sort is suitable to sort the elements in range 1 to k :
K is large
K is small

Made by

Muhammad Usama and DUA sister

K may be large or small
None

We do sorting to, Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n$) order
keep elements in increasing or decreasing order

Question \# 2 of 10 (Start time: 06:19:38 PM) Total Marks: 1
Heaps can be stored in arrays without using any pointers; this is due to the \qquad nature of the binary tree,
Select correct option:
left-complete
right-complete
tree nodes
tree leaves

Question \# 3 of 10 (Start time: 06:20:18 PM) Total Marks: 1
Sieve Technique can be applied to selection problem?
Select correct option:

True

False

Question \# 4 of 10 (Start time: 06:21:10 PM) Total Marks: 1
A heap is a left-complete binary tree that conforms to the \qquad Select correct option:
increasing order only
decreasing order only
heap order
($\log \mathrm{n}$) order

Question \# 5 of 10 (Start time: 06:21:39 PM) Total Marks: 1
A (an) \qquad is a left-complete binary tree that conforms to the heap order Select correct option:
heap
binary tree
binary search tree

Muhammad Usama and DUA sister

array

Question \# 6 of 10 (Start time: 06:22:04 PM) Total Marks: 1
Divide-and-conquer as breaking the problem into a small number of
Select correct option:
pivot
Sieve
smaller sub problems
Selection

Question \# 7 of 10 (Start time: 06:22:40 PM) Total Marks: 1
In Sieve Technique we do not know which item is of interest
Select correct option:

True

False

Question \# 8 of 10 (Start time: 06:23:26 PM) Total Marks: 1
The recurrence relation of Tower of Hanoi is given below $T(n)=\{1$ if $n=1$ and $2 T(n-1)$ if $n>1 \ln$ order to move a tower of 5 rings from one peg to another, how many ring moves are required? Select correct option:

16
10
32
31

Question \# 9 of 10 (Start time: 06:24:44 PM) Total Marks: 1
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \qquad series in the analysis,
Select correct option:
linear
arithmetic
geometric
exponent

Question \# 10 of 10 (Start time: 06:25:43 PM) Total Marks: 1
For the heap sort, access to nodes involves simple \qquad operations.
Select correct option:
arithmetic
binary

Made by

Muhammad Usama and DUA sister

algebraic
logarithmic

For the sieve technique we solve the problem,
Select correct option:
recursively
mathematically
precisely
accurately
The sieve technique works in \qquad as follows
Select correct option:
phases
numbers
integers
routines
Slow sorting algorithms run in,
Select correct option:
$T\left(n^{\wedge} 2\right)$
T(n)
$T(\log n)$
A (an) \qquad is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \qquad series in the analysis,
Select correct option:
linear
arithmetic
geometric
exponent

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as, Select correct option:
T(n)
$T(n / 2)$
$\log n$
$\mathrm{n} / 2+\mathrm{n} / 4$

The sieve technique is a special case, where the number of sub problems is just

Muhammad Usama and DUA sister

Select correct option:
5
many
1
few

In which order we can sort?
Select correct option:
increasing order only
decreasing order only
increasing order or decreasing order
both at the same time

The recurrence relation of Tower of Hanoi is given below $T(n)=\{1$ if $n=1$ and $2 T(n-1)$ if $n>1 \ln$ order to move a tower of 5 rings from one peg to another, how many ring moves are required? Select correct option:
16
10
32
31

Analysis of Selection algorithm ends up with,
Select correct option:
T(n)
$T(1 / 1+n)$
$\mathrm{T}(\mathrm{n} / 2)$
$T(n / 2)+n)$

We do sorting to, Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

Divide-and-conquer as breaking the problem into a small number of Select correct option:
pivot
Sieve
smaller sub problems
Selection

Muhammad Usama and DUA sister

The analysis of Selection algorithm shows the total running time is indeed \qquad in n, Select correct option:
arithmetic
geometric
linear
orthogonal

How many elements do we eliminate in each time for the Analysis of Selection algorithm? Select correct option:
$n / 2$ elements
($n / 2$) $+n$ elements
$n / 4$ elements
2 n elements

Sieve Technique can be applied to selection problem?
Select correct option:
True
false

For the heap sort we store the tree nodes in
Select correct option:
level-order traversal
in-order traversal
pre-order traversal
post-order traversal

One of the clever aspects of heaps is that they can be stored in arrays without using any
Select correct option:
pointers
constants

Made by

Muhammad Usama and DUA sister

variables
functions

A (an) \qquad is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array
Divide-and-conquer as breaking the problem into a small number of Select correct option:
pivot
Sieve
smaller sub problems
Selection

Heaps can be stored in arrays without using any pointers; this is due to the \qquad nature of the binary tree,
Select correct option:
left-complete
right-complete
tree nodes
tree leaves

For the sieve technique we solve the problem,
Select correct option:
recursively mathematically
precisely
accurately
A heap is a left-complete binary tree that conforms to the \qquad Select correct option:
increasing order only decreasing order only
heap order
($\log \mathrm{n}$) order

We do sorting to, Select correct option:
keep elements in random positions

Muhammad Usama and DUA sister

keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

How many elements do we eliminate in each time for the Analysis of Selection algorithm?
Select correct option:
$\mathrm{n} / 2$ elements
($\mathrm{n} / 2$) +n elements
$n / 4$ elements
2 n elements

How much time merge sort takes for an array of numbers?
Select correct option:
$T\left(n^{\wedge} 2\right)$
T(n)
$T(\log n)$
$T(n \log n)$

The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,
Select correct option:
divide-and-conquer
decrease and conquer
greedy nature
2-dimension Maxima

Question \# 1 of 10 (Start time: 08:17:23 AM) Total M a r k s: 1
The number of nodes in a complete binary tree of height h is
Select correct option:
$2^{\wedge}(h+1)-1$
2 * $(\mathrm{h}+1)-1$
2 * $(h+1)$
$\left((h+1)^{\wedge} 2\right)-1$
Question \# 2 of 10 (Start time: 08:18:46 AM) Total M a r k s: 1
A (an) \qquad is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array

Muhammad Usama and DUA sister

Question \# 3 of 10 (Start time: 08:19:38 AM) Total M a r k s: 1
In Sieve Technique we do not know which item is of interest
Select correct option:
True
False

Question \# 4 of 10 (Start time: 08:20:33 AM) Total M a r k s: 1
Heaps can be stored in arrays without using any pointers; this is due to the
\qquad nature of the binary tree,
Select correct option:
left-complete
right-complete
tree nodes
tree leaves

Question \# 5 of 10 (Start time: 08:21:59 AM) Total M a r k s: 1
In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
Select correct option:
T(n)
$T(n / 2)$
$\log n$
$\mathrm{n} / 2+\mathrm{n} / 4$
Question \# 6 of 10 (Start time: 08:23:01 AM) Total M a r k s: 1
For the sieve technique we solve the problem,
Select correct option:
recursively
mathematically
precisely
accurately
Theta asymptotic notation for $\mathrm{T}(\mathrm{n})$:
Select correct option:
Set of functions described by: $c 1 g(n)$ Set of functions described by $c 1 g(n)>=f(n)$ for $c 1 s$
Theta for $\mathrm{T}(\mathrm{n})$ is actually upper and worst case comp
Set of functions described by:
c1g(n)
Question \# 8 of 10 (Start time: 08:24:39 AM) Total M a r k s: 1
The sieve technique is a special case, where the number of sub problems is just
Select correct option:
5
many

Muhammad Usama and DUA sister

1
few
Question \# 9 of 10 (Start time: 08:25:54 AM) Total M a r k s: 1
Sieve Technique applies to problems where we are interested in finding a single item from a larger set of \qquad
Select correct option:
n items
phases
pointers
constant

Question \# 10 of 10 (Start time: 08:26:44 AM) Total M a r k s: 1
The sieve technique works in \qquad as follows
Select correct option:
phases
numbers
integers
routines

Memorization is?

To store previous results for future use
To avoid this unnecessary repetitions by writing down the results of recursive calls and looking them up again if we need them later
To make the process accurate
None of the above

Question \# 2 of 10 Total M a r k s: 1
Which sorting algorithm is faster
$O(n \log n)$
$0 n^{\wedge} 2$
0 ($\mathrm{n}+\mathrm{k}$)
$0 n^{\wedge} 3$

Quick sort is
Stable \& in place
Not stable but in place
Stable but not in place
Some time stable \& some times in place

One example of in place but not stable algorithm is
Merger Sort
Quick Sort
Continuation Sort
Bubble Sort

Muhammad Usama and DUA sister

In Quick Sort Constants hidden in $\mathrm{T}(\mathrm{n} \log \mathrm{n})$ are
Large
Medium
Small
Not Known

Continuation sort is suitable to sort the elements in range 1 to k
K is Large
K is not known
K may be small or large
K is small

In stable sorting algorithm.
If duplicate elements remain in the same relative position after sorting One array is used
More than one arrays are required
Duplicating elements not handled
Which may be a stable sort?
Merger
Insertion
Both above
None of the above

An in place sorting algorithm is one that uses \qquad arrays for storage
Two dimensional arrays
More than one array
No Additional Array
None of the above

Continuing sort has time complexity of ?
O(n)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
O(nlogn)
$\mathrm{O}(\mathrm{k})$

We do sorting to, keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

Muhammad Usama and DUA sister

In Sieve Technique we donot know which item is of interest

True

False
A (an) \qquad is a left-complete binary tree that conforms to the
heap order
heap
binary tree
binary search tree
array
27. The sieve technique works in \qquad as follows phases
numbers
integers
routines

For the sieve technique we solve the problem,
recursively
mathematically
precisely
accurately
29. For the heap sort, access to nodes involves simple \qquad operations.
arithmetic
binary
algebraic
logarithmic

The analysis of Selection algorithm shows the total running time is indeed \qquad in n, \backslash
arithmetic
geometric
linear
orthogonal

For the heap sort, access to nodes involves simple \qquad operations.
Select correct option:
arithmetic
binary
algebraic
logarithmic

Made by

Muhammad Usama and DUA sister

Sieve Technique applies to problems where we are interested in finding a single item from a larger set of \qquad Select correct option:
n items
phases
pointers
constant

Question \# 9 of 10 (Start time: 07:45:36 AM) Total Marks: 1 In Sieve Technique we do not know which item is of interest Select correct option:
True
False

How much time merge sort takes for an array of numbers?
Select correct option:
$T\left(n^{\wedge} 2\right)$
T(n)
$T(\log n)$
$T(n \log n)$

For the heap sort we store the tree nodes in
Select correct option:
level-order traversal
in-order traversal
pre-order traversal
post-order traversal

Sorting is one of the few problems where provable \qquad bonds exits on how fast we can sort,
Select correct option:
upper
lower
average
$\log n$
single item from a larger set of \qquad
Select correct option:
n items
phases
pointers
constant

Muhammad Usama and DUA sister

A heap is a left-complete binary tree that conforms to the \qquad
Select correct option:
increasing order only
decreasing order only
heap order
($\log \mathrm{n}$) order

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
Select correct option:
T(n)
$T(n / 2)$
$\log n$
n/2+n/4
The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,
Select correct option:
divide-and-conquer
decrease and conquer
greedy nature
2-dimension Maxima

The sieve technique works in \qquad as follows
Select correct option:
phases
numbers
integers
routines
For the Sieve Technique we take time
Select correct option:
T(nk)
$\mathrm{T}(\mathrm{n} / 3$)
n^2
n/3

In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \qquad series in the analysis,
linear
arithmetic
geometric
exponent

Muhammad Usama and DUA sister

Analysis of Selection algorithm ends up with, Select correct option:
T(n)
$\mathrm{T}(1 / 1+\mathrm{n})$
$T(n / 2)$
$T((n / 2)+n)$

Quiz Start Time: 07:23 PM
Time Left 90
$\mathrm{sec}(\mathrm{s})$
Question \# 1 of 10 (Start time: 07:24:03 PM) Total M a r k s: 1
In in-place sorting algorithm is one that uses arrays for storage :
Select correct option:
An additional array
No additional array
Both of above may be true according to algorithm
More than 3 arrays of one dimension.

Time Left 89
$\mathrm{sec}(\mathrm{s})$
Question \# 2 of 10 (Start time: 07:25:20 PM) Total M a r k s: 1
Which sorting algorithn is faster :
Select correct option:
$\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
O(nlogn)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
$\mathrm{O}\left(\mathrm{n}^{\wedge}\right)$
In stable sorting algorithm:
Select correct option:
One array is used
In which duplicating elements are not handled.
More then one arrays are required.
Duplicating elements remain in same relative posistion after sorting.
Counting sort has time complexity:
Select correct option:
$\mathrm{O}(\mathrm{n})$
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
O(k)
O(nlogn)

Made by

Muhammad Usama and DUA sister

Counting sort is suitable to sort the elements in range 1 to k :
Select correct option:
K is large
K is small
K may be large or small
None

Memorization is :
Select correct option:
To store previous results for further use.
To avoid unnecessary repetitions by writing down the results of recursive calls and looking them again if needed later
To make the process accurate.
None of the above

The running time of quick sort depends heavily on the selection of
Select correct option:
No of inputs
Arrangement of elements in array
Size o elements
Pivot elements

Which may be stable sort:
Select correct option:
Bubble sort
Insertion sort
Both of above

In Quick sort algorithm, constants hidden in $\mathrm{T}(\mathrm{n} \lg \mathrm{n})$ are
Select correct option:
Large
Medium
Not known
small

Quick sort is
Select correct option:
Stable and In place
Not stable but in place

Muhammad Usama and DUA sister

Stable and not in place
Some time in place and send some time stable

For the Sieve Technique we take time
T(nk)
T(n/3)
$\mathrm{n}^{\wedge} 2$
n/3
The sieve technique is a special case, where the number of sub problems is just
Select correct option:
5
Many
1
Few

The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,
Select correct option:
divide-and-conquer
decrease and conquer
greedy nature
2-dimension Maxima

Quick sort is
Select correct option:
Stable and In place
Not stable but in place
Stable and not in place
Some time in place and send some time stable

Memoization is :
Select correct option:
To store previous results for further use.
To avoid unnecessary repetitions by writing down the results of recursive calls and looking them again if needed later
To make the process accurate.
None of the above

Made by

Muhammad Usama and DUA sister

One Example of in place but not stable sort is
Quick
Heap
Merge
Bubble

The running time of quick sort depends heavily on the selection of Select correct option:
No of inputs
Arrangement of elements in array
Size o elements
Pivot elements

Question \# 9 of 10 (Start time: 07:39:07 PM) Total M a r k s: 1
In Quick sort algorithm, constants hidden in T(n $\lg n$) are
Select correct option:
Large
Medium
Not known
Small

CS502 - Fundamentals of Algorithms Quiz No. 2 DEC 03, 2012

Which may be stable sort:
Select correct option:
Bubble sort
Insertion sort
Both of above
Selection sort
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \qquad series in the analysis,
Select correct option:
linear
arithmetic
geometric
exponent

Made by

Muhammad Usama and DUA sister

In Quick sort algorithm, constants hidden in T(n lg n) are Select correct option:

Large
Medium
Not known
small

How much time merge sort takes for an array of numbers?
Select correct option:
$T\left(n^{\wedge} 2\right)$
T(n)
$T(\log n)$
$T(n \log n)$

Counting sort has time complexity:
Select correct option:
$\mathrm{O}(\mathrm{n})$
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
O(k)
O(nlogn)

In which order we can sort?
Select correct option:
increasing order only
decreasing order only
increasing order or decreasing order
both at the same time

A (an) \qquad is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array

Muhammad Usama and DUA sister

The analysis of Selection algorithm shows the total running time is indeed \qquad in n , Select correct option:
arithmetic
geometric
linear
orthogonal

Quick sort is based on divide and conquer paradigm; we divide the problem on base of pivot element and:
Select correct option:

There is explicit combine process as well to conquer the solution.
No work is needed to combine the sub-arrays, the array is already sorted
Merging the sub arrays
None of above.

Sorting is one of the few problems where provable \qquad bonds exits on how fast we can sort,
Select correct option:
upper
lower
average
$\log n$
In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
T(n)
$T(n / 2)$
$\log n$
n/2+n/4

Quick sort is based on divide and conquer paradigm; we divide the problem on base of pivot element and:
There is explicit combine process as w ell to conquer
No w ork is needed to combine the sub-arrays, the a
Merging the subarrays
None of above

The number of nodes in a complete binary tree of height h is

Made by

Muhammad Usama and DUA sister

$2^{\wedge}(h+1)-1$
2 * $(\mathrm{h}+1)-1$
2 * $(\mathrm{h}+1)$
$\left((h+1)^{\wedge} 2\right)-1$

How many elements do we eliminate in each time for the Analysis of Selection algorithm?
$\mathrm{n} / 2$ elements
($\mathrm{n} / 2$) +n elements
$\mathrm{n} / 4$ elements
$2 n$ elements

Which sorting algorithn is faster :
$\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
O(nlogn)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
$O\left(n^{\wedge} 3\right)$

We do sorting to,
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order
Slow sorting algorithms run in,
$T\left(n^{\wedge} 2\right)$
T(n)
$T(\log n)$
$T(n \log n)$
One of the clever aspects of heaps is that they can be stored in arrays without using any

Pointers

Constants
Variables
Functions

Counting sort is suitable to sort the elements in range 1 to k :
K is large
K is small
K may be large or small
None

Muhammad Usama and DUA sister

We do sorting to, Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

Question \# 2 of 10 (Start time: 06:19:38 PM) Total Marks: 1
Heaps can be stored in arrays without using any pointers; this is due to the \qquad nature of the binary tree,
Select correct option:

```
left-complete
right-complete
tree nodes
tree leaves
```

Question \# 3 of 10 (Start time: 06:20:18 PM) Total Marks: 1
Sieve Technique can be applied to selection problem?
Select correct option:

True

False

Question \# 4 of 10 (Start time: 06:21:10 PM) Total Marks: 1
A heap is a left-complete binary tree that conforms to the \qquad Select correct option:
increasing order only
decreasing order only
heap order
($\log \mathrm{n}$) order

Question \# 5 of 10 (Start time: 06:21:39 PM) Total Marks: 1
A (an) \qquad is a left-complete binary tree that conforms to the heap order Select correct option:
heap
binary tree
binary search tree
array

Question \# 6 of 10 (Start time: 06:22:04 PM) Total Marks: 1

Muhammad Usama and DUA sister

Divide-and-conquer as breaking the problem into a small number of Select correct option:
pivot
Sieve
smaller sub problems
Selection

Question \# 7 of 10 (Start time: 06:22:40 PM) Total Marks: 1
In Sieve Technique we do not know which item is of interest
Select correct option:

True

False

Question \# 8 of 10 (Start time: 06:23:26 PM) Total Marks: 1
The recurrence relation of Tower of Hanoi is given below $T(n)=\{1$ if $n=1$ and $2 T(n-1)$ if $n>1 \mathrm{ln}$ order to move a tower of 5 rings from one peg to another, how many ring moves are required? Select correct option:

16
10
32
31

Question \# 9 of 10 (Start time: 06:24:44 PM) Total Marks: 1
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \qquad series in the analysis,
Select correct option:
linear
arithmetic
geometric
exponent

Question \# 10 of 10 (Start time: 06:25:43 PM) Total Marks: 1
For the heap sort, access to nodes involves simple \qquad operations.
Select correct option:
arithmetic
binary
algebraic
logarithmic

Made by

Muhammad Usama and DUA sister

For the sieve technique we solve the problem,
Select correct option:
recursively
mathematically
precisely
accurately
The sieve technique works in \qquad as follows
Select correct option:
phases
numbers
integers
routines
Slow sorting algorithms run in,
Select correct option:
$T\left(n^{\wedge} 2\right)$
T(n)
$T(\log n)$
A (an) \qquad is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \qquad series in the analysis,
Select correct option:
linear
arithmetic
geometric
exponent

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
Select correct option:
T(n)
$T(n / 2)$
$\log n$
n/2+n/4

The sieve technique is a special case, where the number of sub problems is just Select correct option:
5
many

Muhammad Usama and DUA sister

1
few

In which order we can sort?
Select correct option:
increasing order only
decreasing order only
increasing order or decreasing order
both at the same time

The recurrence relation of Tower of Hanoi is given below $T(n)=\{1$ if $n=1$ and $2 T(n-1)$ if $n>1$ In order to move a tower of 5 rings from one peg to another, how many ring moves are required? Select correct option:
16
10
32
31

Analysis of Selection algorithm ends up with, Select correct option:
T(n)
$\mathrm{T}(1 / 1+\mathrm{n})$
$T(n / 2)$
$T((n / 2)+n)$

We do sorting to, Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

Divide-and-conquer as breaking the problem into a small number of Select correct option:
pivot
Sieve
smaller sub problems
Selection
\qquad in n ,

Muhammad Usama and DUA sister

Select correct option:
arithmetic
geometric
linear
orthogonal

How many elements do we eliminate in each time for the Analysis of Selection algorithm? Select correct option:
$n / 2$ elements
($\mathrm{n} / 2$) +n elements
$n / 4$ elements
$2 n$ elements

Sieve Technique can be applied to selection problem?
Select correct option:
True
false

For the heap sort we store the tree nodes in
Select correct option:
level-order traversal
in-order traversal
pre-order traversal
post-order traversal

One of the clever aspects of heaps is that they can be stored in arrays without using any
Select correct option:
pointers
constants
variables
functions

Muhammad Usama and DUA sister

A (an) \qquad is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array
Divide-and-conquer as breaking the problem into a small number of Select correct option:
pivot
Sieve
smaller sub problems
Selection

Heaps can be stored in arrays without using any pointers; this is due to the \qquad nature of the binary tree,
Select correct option:
left-complete
right-complete
tree nodes
tree leaves

For the sieve technique we solve the problem,
Select correct option:
recursively
mathematically
precisely
accurately
A heap is a left-complete binary tree that conforms to the \qquad
Select correct option:
increasing order only
decreasing order only
heap order
($\log \mathrm{n}$) order

We do sorting to, Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

Muhammad Usama and DUA sister

How many elements do we eliminate in each time for the Analysis of Selection algorithm? Select correct option:
$n / 2$ elements
($\mathrm{n} / 2$) +n elements
$\mathrm{n} / 4$ elements
$2 n$ elements

How much time merge sort takes for an array of numbers?
Select correct option:
$T\left(n^{\wedge} 2\right)$
T(n)
$T(\log n)$
$T(n \log n)$

The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,
Select correct option:
divide-and-conquer
decrease and conquer
greedy nature
2-dimension Maxima

Question \# 1 of 10 (Start time: 08:17:23 AM) Total M a r k s: 1
The number of nodes in a complete binary tree of height h is
Select correct option:
$2^{\wedge}(h+1)-1$
2 * $(\mathrm{h}+1)-1$
2 * $(\mathrm{h}+1)$
$\left((h+1)^{\wedge} 2\right)-1$
Question \# 2 of 10 (Start time: 08:18:46 AM) Total M a rks: 1
A (an) \qquad is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array
Question \# 3 of 10 (Start time: 08:19:38 AM) Total M a r k s: 1
In Sieve Technique we do not know which item is of interest
Select correct option:

Muhammad Usama and DUA sister

True
False

Question \# 4 of 10 (Start time: 08:20:33 AM) Total M a r k s: 1
Heaps can be stored in arrays without using any pointers; this is due to the
\qquad nature of the binary tree,
Select correct option:
left-complete
right-complete
tree nodes
tree leaves

Question \# 5 of 10 (Start time: 08:21:59 AM) Total M a r k s: 1
In the analysis of Selection algorithm, we make a number of passes, in fact it could be as
many as,
Select correct option:
$T(n)$
$T(n / 2)$
$\log n$
$n / 2+n / 4$
Question \# 6 of 10 (Start time: 08:23:01 AM) Total M a r k s: 1
For the sieve technique we solve the problem,
Select correct option:
recursively
mathematically
precisely
accurately
Theta asymptotic notation for $\mathrm{T}(\mathrm{n})$:
Select correct option:
Set of functions described by: c1g(n)Set of functions described by c1g(n)>=f(n) for c1 s
Theta for $\mathrm{T}(\mathrm{n})$ is actually upper and worst case comp
Set of functions described by:
c1g(n)

Question \# 8 of 10 (Start time: 08:24:39 AM) Total M a r k s: 1
The sieve technique is a special case, where the number of sub problems is just
Select correct option:
5
many
1
few
Question \# 9 of 10 (Start time: 08:25:54 AM) Total M a r k s: 1
Sieve Technique applies to problems where we are interested in finding a single item from a

Muhammad Usama and DUA sister

larger set of \qquad
Select correct option:
n items
phases
pointers
constant

Question \# 10 of 10 (Start time: 08:26:44 AM) Total M a r k s: 1
The sieve technique works in \qquad as follows
Select correct option:
phases
numbers
integers
routines

Memorization is?
To store previous results for future use
To avoid this unnecessary repetitions by writing down the results of recursive calls and looking them up again if we need them later
To make the process accurate
None of the above

Question \# 2 of 10 Total M arks: 1
Which sorting algorithm is faster
O ($\mathrm{n} \log \mathrm{n}$)
$0 n^{\wedge} 2$
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
$0 n^{\wedge} 3$

Quick sort is
Stable \& in place
Not stable but in place
Stable but not in place
Some time stable \& some times in place
One example of in place but not stable algorithm is
Merger Sort
Quick Sort
Continuation Sort
Bubble Sort

In Quick Sort Constants hidden in $\mathrm{T}(\mathrm{n} \log \mathrm{n})$ are
Large
Medium

Muhammad Usama and DUA sister

Small
Not Known

Continuation sort is suitable to sort the elements in range 1 to k
K is Large
K is not known
K may be small or large
K is small

In stable sorting algorithm.
If duplicate elements remain in the same relative position after sorting
One array is used
More than one arrays are required
Duplicating elements not handled
Which may be a stable sort?
Merger
Insertion
Both above
None of the above

An in place sorting algorithm is one that uses \qquad arrays for storage
Two dimensional arrays
More than one array
No Additional Array
None of the above

Continuing sort has time complexity of ?
$\mathrm{O}(\mathrm{n})$
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
O(nlogn)
$\mathrm{O}(\mathrm{k})$
We do sorting to,
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

In Sieve Technique we donot know which item is of interest
True
False

Muhammad Usama and DUA sister

A (an) \qquad is a left-complete binary tree that conforms to the heap order
heap
binary tree
binary search tree
array
27. The sieve technique works in \qquad as follows phases
numbers
integers
routines

For the sieve technique we solve the problem, recursively
mathematically
precisely
accurately
29. For the heap sort, access to nodes involves simple \qquad operations.
arithmetic
binary
algebraic
logarithmic

The analysis of Selection algorithm shows the total running time is indeed \qquad in n, \backslash
arithmetic
geometric
linear
orthogonal
For the heap sort, access to nodes involves simple \qquad operations.
Select correct option:
arithmetic
binary
algebraic
logarithmic
Sieve Technique applies to problems where we are interested in finding a single item from a larger set of \qquad Select correct option:

Muhammad Usama and DUA sister

n items
phases
pointers
constant

Question \# 9 of 10 (Start time: 07:45:36 AM) Total Marks: 1
In Sieve Technique we do not know which item is of interest
Select correct option:
True
False

How much time merge sort takes for an array of numbers?
Select correct option:
$T\left(n^{\wedge} 2\right)$
T(n)
$T(\log n)$
$T(n \log n)$
For the heap sort we store the tree nodes in
Select correct option:
level-order traversal
in-order traversal
pre-order traversal
post-order traversal

Sorting is one of the few problems where provable \qquad bonds exits on how fast we can sort,
Select correct option:
upper
lower
average
$\log n$
single item from a larger set of \qquad
Select correct option:
n items
phases
pointers
constant

A heap is a left-complete binary tree that conforms to the \qquad
Select correct option:
increasing order only

Made by

Muhammad Usama and DUA sister

decreasing order only
heap order
$(\log n)$ order
In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
Select correct option:
$T(n)$
$T(n / 2)$
$\log n$
$n / 2+n / 4$

The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of, Select correct option:
divide-and-conquer
decrease and conquer
greedy nature
2-dimension Maxima

The sieve technique works in \qquad as follows
Select correct option:
phases
numbers
integers
routines
For the Sieve Technique we take time
Select correct option:
T(nk)
T(n/3)
$\mathrm{n}^{\wedge} 2$
n/3
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \qquad series in the analysis,
linear
arithmetic
geometric
exponent
Analysis of Selection algorithm ends up with, Select correct option:
$T(n)$

Made by

Muhammad Usama and DUA sister

T(1/1+n)
$\mathrm{T}(\mathrm{n} / 2)$
$T((n / 2)+n)$
Quiz Start Time: 07:23 PM
Time Left 90
$\mathrm{sec}(\mathrm{s})$
Question \# 1 of 10 (Start time: 07:24:03 PM) Total M a r k s: 1
In in-place sorting algorithm is one that uses arrays for storage :
Select correct option:
An additional array
No additional array
Both of above may be true according to algorithm
More than 3 arrays of one dimension.

Time Left 89
$\mathrm{sec}(\mathrm{s})$
Question \# 2 of 10 (Start time: 07:25:20 PM) Total M a r k s: 1
Which sorting algorithn is faster :
Select correct option:
$\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
O(nlogn)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
O(n^{\wedge})
In stable sorting algorithm:
Select correct option:
One array is used
In which duplicating elements are not handled.
More then one arrays are required.
Duplicating elements remain in same relative posistion after sorting.

Counting sort has time complexity:

Select correct option:
$\mathrm{O}(\mathrm{n})$
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
$\mathrm{O}(\mathrm{k})$
O(nlogn)

Counting sort is suitable to sort the elements in range 1 to k :
Select correct option:
K is large
K is small

Muhammad Usama and DUA sister

K may be large or small
None

Memorization is :
Select correct option:
To store previous results for further use.
To avoid unnecessary repetitions by writing down the results of recursive calls and looking them again if needed later
To make the process accurate.
None of the above

The running time of quick sort depends heavily on the selection of Select correct option:
No of inputs
Arrangement of elements in array
Size o elements
Pivot elements

Which may be stable sort:
Select correct option:
Bubble sort
Insertion sort
Both of above

In Quick sort algorithm, constants hidden in $\mathrm{T}(\mathrm{n} \lg \mathrm{n})$ are Select correct option:
Large
Medium
Not known
small

Quick sort is
Select correct option:
Stable and In place
Not stable but in place
Stable and not in place
Some time in place and send some time stable

For the Sieve Technique we take time
T(nk)

Muhammad Usama and DUA sister

T(n / 3)
$\mathrm{n}^{\wedge} 2$
n/3
The sieve technique is a special case, where the number of sub problems is just
Select correct option:
5
Many
1
Few

The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,
Select correct option:
divide-and-conquer
decrease and conquer
greedy nature
2-dimension Maxima

Quick sort is
Select correct option:
Stable and In place
Not stable but in place
Stable and not in place
Some time in place and send some time stable
Memoization is :
Select correct option:
To store previous results for further use.
To avoid unnecessary repetitions by writing down the results of recursive calls and looking them again if needed later
To make the process accurate.
None of the above

One Example of in place but not stable sort is
Quick
Heap
Merge
Bubble

Muhammad Usama and DUA sister

The running time of quick sort depends heavily on the selection of Select correct option:
No of inputs
Arrangement of elements in array
Size o elements
Pivot elements
Question \# 9 of 10 (Start time: 07:39:07 PM) Total M a r k s: 1
In Quick sort algorithm, constants hidden in $\mathrm{T}(\mathrm{n} \lg \mathrm{n})$ are
Select correct option:
Large
Medium
Not known
Small

CS502 - Fundamentals of Algorithms Quiz No. 3 Dated 28-01-2013

In in-place sorting algorithm is one that uses arrays for storage :
An additional array
No additional array (Right Answer)
Both of above may be true according to algorithm
More than 3 arrays of one dimension.
The running time of quick sort depends heavily on the selection of
No of inputs
Arrangement of elements in array
Size o elements
Pivot element (Right Answer)
In stable sorting algorithm
One array is used
In which duplicating elements are not handled.
More then one arrays are required.
Duplicating elements remain in same relative position after sorting. (Right Answer)
Which sorting algorithn is faster :
$\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
O(nlogn)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$ (Right Answer)
$\mathrm{O}\left(\mathrm{n}^{\wedge}\right)$

Muhammad Usama and DUA sister

In Quick sort algorithm, constants hidden in $\mathrm{T}(\mathrm{n} \lg \mathrm{n})$ are

Large
Medium
Not known
Small (Right Answer)

Quick sort is based on divide and conquer paradigm; we divide the problem on base of pivot element and:

There is explicit combine process as well to conquer the solutin. (Right Answer)

No work is needed to combine the sub-arrays, the array is already sorted
Merging the subarrays
None of above.

There is relationship between number of back edges and number of cycles in DFS Select correct option:
Both are equal.
Cycles are half of back edges.
Cycles are one fourth of back edges. There is no relationship between back edges and number of cycle (Right Answer)

You have an adjacency list for G, what is the time complexity to compute Graph transpose G^T ?
Select correct option:
(V+E) (Right Answer)
V.E

V
E

Question \# 3 of 10 (Start time: 06:54:27 PM) Total Marks: 1
You have an adjacency list for G , what is the time complexity to compute Graph
transpose $\mathrm{G}^{\wedge} \mathrm{T}$.?
? (V + E) Right Answer)
?(V E)
?(V)
?(V^2)

What is the time complexity to extract a vertex from the priority queue in Prim's algorithm?

Muhammad Usama and DUA sister

Select correct option:
\log (V) (Right Answer)
V.V
E.E
$\log (E)$
Dijkstra's algorithm :
Select correct option:
Has greedy approach to find all shortest paths
Has both greedy and Dynamic approach to find all shortest paths
Has greedy approach to compute single source shortest paths to all other vertices (Right
Answer)
Has both greedy and dynamic approach to compute single source shortest paths to all other vertices.

What algorithm technique is used in the implementation of Kruskal solution for the MST?
Greedy Technique (Right Answer)
Divide-and-Conquer Technique
Dynamic Programming Technique
The algorithm combines more than one of the above techniques
What is the time complexity to extract a vertex from the priority queue in Prim's algorithm?
Select correct option:
$(\log \mathrm{E})$
? (V)
? (V+E)
($\log \mathrm{V})$ (Right Answer)
Which is true statement in the following.
Kruskal algorithm is multiple source technique for finding MST.
Kruskal's algorithm is used to find minimum spanning tree of a graph, time complexity of
this algorithm is $\mathrm{O}(\mathrm{EV})$
Both of above

Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best Tree edge) when the graph has relatively few edges) (Right Answer)

The relationship between number of back edges and number of cycles in DFS is, Both are equal
Back edges are half of cycles
Back edges are one quarter of cycles

Muhammad Usama and DUA sister

There is no relationship between no. of edges and cycles (Right Answer)

Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best tree edge) when the graph has relatively few edges.

True (Right Answer)

False

What is the time complexity to extract a vertex from the priority queue in Prim's algorithm?
Select correct option:
$\log (\mathrm{V})$
V.V
E.E
$\log (E)$

Suppose that a graph $G=(\mathrm{V}, \mathrm{E})$ is implemented using adjacency lists. What is the complexity of a breadth-first traversal of G ?
Select correct option:
O(|V|^2)
O(|V | |E|) (Right Answer)
O(|V|^2|E|)
$O(|V|+|E|)$

What is generally true of Adjacency List and Adjacency Matrix representations of graphs?
Select correct option:
Lists require less space than matrices but take longer to find the weight of an edge (v1,v2)
Lists require less space than matrices and they are faster to find the weight of an edge (v 1 ,
2) Right Answer)

Lists require more space than matrices and they take longer to find the weight of an edge (v1, v2)
Lists require more space than matrices but are faster to find the weight of an edge (v1, v2)

What general property of the list indicates that the graph has an isolated vertex?
Select correct option:
There is Null pointer at the end of list.
The Isolated vertex is not handled in list. (not Sure)
Only one value is entered in the list.
There is at least one null list.

A dense undirected graph is:
Select correct option:

Muhammad Usama and DUA sister

A graph in which $E=O\left(V^{\wedge} 2\right)$ (Right Answer)

A graph in which $\mathrm{E}=\mathrm{O}(\mathrm{V})$
A graph in which $\mathrm{E}=\mathrm{O}(\log \mathrm{V})$
All items above may be used to characterize a dense undirected graph

In digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$; G has cycle if and only if

Select correct option:
The DFS forest has forward edge.
The DFS forest has back edge (Right Answer)
The DFS forest has both back and forward edge
BFS forest has forward edge

Back edge is:
Select correct option:
(u, v) where v is an ancestor of u in the tree. (Right Answer)
(u, v) where u is an ancesstor of v in the tree.
(u, v) where v is an predcessor of u in the tree.
None of above

Using ASCII standard the string "abacdaacacwe" will be encoded with \qquad bits Select correct option:
64
128 (Right Answer)
96
120

Cross edge is :
Select correct option:
(u, v) where u and v are not ancestor of one another
(u, v) where u is ancesstor of v and v is not descendent of u.
(u, v) where u and v are not ancestor or descendent of one another (Right Answer)
(u, v) where u and v are either ancestor or descendent of one another.

Which statement is true?
Select correct option:
If a dynamic-programming problem satisfies the optimal-substructure property, then a locally optimal solution is globally optimal.
If a greedy choice property satisfies the optimal-substructure property, then a locally optimal solution is globally optimal.
Both of above Right Answer)
None of above

Muhammad Usama and DUA sister

10 If you find yourself in maze the better traversel approach will bE

A dense undirected graph is:
Select correct option:

A graph in which $\mathrm{E}=\mathrm{O}\left(\mathrm{V}^{\wedge} 2\right)$ (Right Answer)

A graph in which $\mathrm{E}=\mathrm{O}(\mathrm{V})$
A graph in which $\mathrm{E}=\mathrm{O}(\log \mathrm{V})$
All items above may be used to characterize a dense undirected graph

Which is true statement.
Select correct option:
Breadth first search is shortest path algorithm that works on un-weighted graphs (Right
Answer)
Depth first search is shortest path algorithm that works on un-weighted graphs.
Both of above are true.
None of above are true.

Forward edge is:
Select correct option:
(u, v) where u is a proper descendent of v in the tree.
(u, v) where v is a proper descendent of u in the tree. (Right Answer)
(u, v) where v is a proper ancesstor of u in the tree.
(u, v) where u is a proper ancesstor of v in the tree.
Back edge is:
Select correct option:
(u, v) where v is an ancestor of u in the tree. (Right Answer)
(u, v) where u is an ancesstor of v in the tree.
(u, v) where v is an predcessor of u in the tree.
None of above

Suppose that a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is implemented using adjacency lists. What is the complexity of a breadth-first traversal of G ?
Select correct option:
O(|V |^2)
O(|V | |E|) (Right Answer)
O(|V|^2|E|)
O(|V|+|E|)

In digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$; G has cycle if and only if Select correct option:
The DFS forest has forward edge.
The DFS forest has back edge (Right Answer)

Muhammad Usama and DUA sister

The DFS forest has both back and forward edge BFS forest has forward edge

What general property of the list indicates that the graph has an isolated vertex? Select correct option:
There is Null pointer at the end of list.

The Isolated vertex is not handled in list. (not Sure)

Only one value is entered in the list.
There is at least one null list.

If you find yourself in maze the better traversel approach will be :
BFS
BFS and DFS both are valid (Right Answer)
Level order
DFS
Cross edge is:
(u, v) where u and v are not ancestor of one another
(u, v) where u is ancesstor of v and v is not descendent of u.
(u, v) where u and v are not ancestor or descendent of one another (Right Answer)
(u, v) where u and v are either ancestor or descendent of one another.
What algorithm technique is used in the implementation of Kruskal solution for the MST?

Greedy Technique (Right Answer)

Divide-and-Conquer Technique
Dynamic Programming Technique
The algorithm combines more than one of the above techniques

Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best tree edge) when the graph has relatively few

True (Right Answer)

False

You have an adjacency list for G , what is the time complexity to compute Graph transpose G^T.?
? (V + E) Right Answer)
? (VE)
? (V)
? (V^2)

A digraph is strongly connected under what condition?
A digraph is strongly connected if for every pair of vertices $u, v e V, u$ can reach v.
A digraph is strongly connected if for every pair of vertices $u, v e v, u$ can reach v and vice
versa. (Right Answer)

Muhammad Usama and DUA sister

A digraph is strongly connected if for at least one pair of vertex $u, v e V$, u can reach v and vice versa.
A digraph is strongly connected if at least one third pair of vertices $u, v e V, u$ can reach v and vice versa.

The relationship between number of back edges and number of cycles in DFS is, Both are equal
Back edges are half of cycles
Back edges are one quarter of cycles
There is no relationship between no. of edges and cycles (Right Answer)

What algorithm technique is used in the implementation of Kruskal solution for the MST? Greedy Technique (Right Answer)
Divide-and-Conquer Technique
Dynamic Programming Technique
The algorithm combines more than one of the above techniques

CS502 - Fundamentals of Algorithms Quiz No. 4 Dated FEB 05, 2013

In in-place sorting algorithm is one that uses arrays for storage :
An additional array
No additional array (Right Answer)
Both of above may be true according to algorithm
More than 3 arrays of one dimension.

The running time of quick sort depends heavily on the selection of:
No of inputs
Arrangement of elements in array
Size o elements
Pivot element (Right Answer)
In stable sorting algorithm
One array is used
In which duplicating elements are not handled.
More then one arrays are required.
Duplicating elements remain in same relative position after sorting. (Right Answer)
Which sorting algorithm is faster :
$\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$

Muhammad Usama and DUA sister

O(nlogn)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$ (Right Answer)
$\mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)$

In Quick sort algorithm, constants hidden in $\mathrm{T}(\mathrm{n} \lg \mathrm{n})$ are
Large
Medium
Not known
Small (Right Answer)

Quick sort is based on divide and conquer paradigm; we divide the problem on base of pivot element and:
There is explicit combine process as well to conquer the solutin. (Right Answer)
No work is needed to combine the sub-arrays, the array is already sorted
Merging the subarrays
None of above.

There is relationship between number of back edges and number of cycles in DFS Select correct option:
Both are equal.
Cycles are half of back edges.
Cycles are one fourth of back edges.
There is no relationship between back edges and number of cycle (Right Answer)

You have an adjacency list for G, what is the time complexity to compute Graph transpose $\mathrm{G}^{\wedge} \mathrm{T}$
Select correct option:
(V+E) (Right Answer)
V.E

V
E

Dijkstra's algorithm :
Select correct option:
Has greedy approach to find all shortest paths
Has both greedy and Dynamic approach to find all shortest paths

Has greedy approach to compute single source shortest paths to all other vertices (page 154)

Has both greedy and dynamic approach to compute single source shortest paths to all other vertices.

Muhammad Usama and DUA sister

What is the time complexity to extract a vertex from the priority queue in Prim's algorithm? Select correct option:

```
O (log E)
```

? (V)
? (V+E)
$\mathrm{O}(\log \mathrm{V})($ page \#152)

Which is true statement in the following.
Kruskal algorithm is multiple source technique for finding MST.
Kruskal's algorithm is used to find minimum spanning tree of a graph, time complexity of this algorithm is $\mathrm{O}(\mathrm{EV})$
Both of above

```
=>Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best tree
edge) when the graph has relatively few edges.
```

Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best tree edge) when the graph has relatively few edges.

```
True (Right Answer)
```

False

What general property of the list indicates that the graph has an isolated vertex?
Select correct option:
There is Null pointer at the end of list.
The Isolated vertex is not handled in list. (not Sure)
Only one value is entered in the list.
There is at least one null list.

Which statement is true?
Select correct option:
If a dynamic-programming problem satisfies the optimal-substructure property, then a locally optimal solution is globally optimal.
If a greedy choice property satisfies the optimal-substructure property, then a locally optimal solution is globally optimal.

Both of above Right Answer)

None of above

A dense undirected graph is:
Select correct option:
A graph in which $\mathrm{E}=\mathrm{O}\left(\mathrm{V}^{\wedge} 2\right)$ (Right Answer)
A graph in which $\mathrm{E}=\mathrm{O}(\mathrm{V})$

Muhammad Usama and DUA sister

A graph in which E = O(log V)
All items above may be used to characterize a dense undirected graph

Which is true statement.
Select correct option:
Breadth first search is shortest path algorithm that works on un-weighted graphs (Right
Answer)
Depth first search is shortest path algorithm that works on un-weighted graphs.
Both of above are true.
None of above are true.

What algorithm technique is used in the implementation of Kruskal solution for the MST? Greedy Technique (page \#142)
Divide-and-Conquer Technique
Dynamic Programming Technique
The algorithm combines more than one of the above techniques

A digraph is strongly connected under what condition?
A digraph is strongly connected if for every pair of vertices $u, v e V, u$ can reach v.
A digraph is strongly connected if for every pair of vertices $u, v e v, u$ can reach v and vice
versa. (Page \#135)
A digraph is strongly connected if for at least one pair of vertex $u, v e V$, u can reach v and vice versa.
A digraph is strongly connected if at least one third pair of vertices u, $v e V, u$ can reach v and vice versa.

The relationship between number of back edges and number of cycles in DFS is, Both are equal
Back edges are half of cycles
Back edges are one quarter of cycles
There is no relationship between no. of edges and cycles (p131)

Question \# 2 of 10 (Start time: 10:35:36 PM) Total Marks: 1
Suppose that a graph $G=(\mathrm{V}, \mathrm{E})$ is implemented using adjacency lists. What is the complexity of a breadth-first traversal of G?
Select correct option:
$\mathrm{O}\left(|\mathrm{V}|^{\wedge} 2\right)$

Muhammad Usama and DUA sister
 $\mathrm{O}(|\mathrm{V}||\mathrm{E}|)$
 $\mathrm{O}(|\mathrm{V}| \wedge 2|\mathrm{E}|)$
 $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|) \mathrm{pg} 116$

Question \# 4 of 10 (Start time: 10:37:30 PM) Total Marks: 1
Forward edge is:
Select correct option:
(u, v) where u is a proper descendent of v in the tree.
(u, v) where v is a proper descendent of u in the tree. Pg 129
(u, v) where v is a proper ancesstor of u in the tree.
(u, v) where u is a proper ancesstor of v in the tree.

Question \# 5 of 10 (Start time: 10:37:58 PM) Total Marks: 1
Using ASCII standard the string "abacdaacacwe" will be encoded with \qquad bits Select correct option:
64
128
96 pg $101 \quad 12 * 8=96$
120

Question \# 7 of 10 (Start time: 10:38:40 PM) Total Marks: 1
If you find yourself in maze the better traversel approach will be :
Select correct option:
BFS
BFS and DFS both are valid (pg 119)
Level order
DFS

Question \# 8
In digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$; G has cycle if and only if Select correct option:
The DFS forest has forward edge.
The DFS forest has back edge (pg 131)
The DFS forest has both back and forward edge
BFS forest has forward edge

Question \# 9

Muhammad Usama and DUA sister

What is generally true of Adjacency List and Adjacency Matrix representations of graphs?
Select correct option:
Lists require less space than matrices but take longer to find the weight of an edge (v1,v2)
Lists require less space than matrices and they are faster to find the weight of an edge ($\mathrm{v} 1, \mathrm{v} 2$)
(pg 116)
Lists require more space than matrices and they take longer to find the weight of an edge (v1, v2)
Lists require more space than matrices but are faster to find the weight of an edge
(v1, v2)

Question \# 10
Back edge is:
Select correct option:
(u, v) where v is an ancestor of u in the tree. (Pg 128)
(u, v) where u is an ancesstor of v in the tree.
(u, v) where v is an predcessor of u in the tree.
None of above
\qquad
My $3{ }^{\text {rd }}$ Quiz
http://cs-mcqs.blogspot.com/2012/06/data-structures-algorithms-multiple.html

FINALTERM EXAMINATION

Question No: 2

Although it requires more complicated data structures, Prim's algorithm for a minimum spanning tree is better than Kruskal's when the graph has a large number of vertices.
\rightarrow True $\quad \rightarrow$ False

Question No: 3

If a problem is in NP , it must also be in P .
\rightarrow True \quad False \quad unknown

Question No: 5

If a graph has v vertices and e edges then to obtain a spanning tree we have to delete
\downarrow vedges. $>\mathrm{v}-\mathrm{e}+5$ edges $\downarrow \mathrm{v}+\mathrm{e}$ edges. $>$ None of these
Question No: 6
Maximum number of vertices in a Directed Graph may be $\left|V^{2}\right|$

Muhammad Usama and DUA sister
 - True
 - False

Question No: 7
The Huffman algorithm finds a (n) \qquad solution.
\rightarrow Optimal \downarrow Non-optimal $>$ Exponential - Polynomial

Question No: 8

The Huffman algorithm finds an exponential solution

- True

False

Question No: 9
The Huffman algorithm finds a polynomial solution \quad True False
Question No: 10
The greedy part of the Huffman encoding algorithm is to first find two nodes
with larger frequency. \rightarrow True $>$ False

Question No: 11

The codeword assigned to characters by the Huffman algorithm have the property that no codeword is the postfix of any other. \quad True \rightarrow False

Question No: 12

Huffman algorithm uses a greedy approach to generate a postfix code T that minimizes the expected length $\mathrm{B}(\mathrm{T})$ of the encoded string. \rightarrow True $>$ False

Question No: 13

Shortest path problems can be solved efficiently by modeling the road map as a graph.
\rightarrow True \quad False

Question No: 14

Dijkestra's single source shortest path algorithm works if all edges weights are non-negative and there are negative cost cycles. - True False

Question No: 15

Bellman-Ford allows negative weights edges and negative cost cycles \rightarrow True False

Question No: 16

The term "coloring" came form the original application which was in architectural design.
\rightarrow True - False
Question No: 17
In the clique cover problem, for two vertices to be in the same group, they must be adjacent to
each other. \rightarrow True \rightarrow False

Question No: 18

Dijkstra's algorithm is operates by maintaining a subset of vertices True False
Question No: 19

Muhammad Usama and DUA sister

The difference between Prim's algorithm and Dijkstra's algorithm is that Dijkstra's algorithm uses a different key. \rightarrow True $>$ False

Question No: 21

We do sorting to,
\rightarrow keep elements in random positions keep the algorithm run in linear order

- keep the algorithm run in $(\log n)$ order
- keep elements in increasing or decreasing order

Question No: 22

After partitioning array in Quick sort, pivot is placed in a position such that

- Values smaller than pivot are on left and larger than pivot are on right
- Values larger than pivot are on left and smaller than pivot are on right
- Pivot is the first element of array Pivot is the last element of array

Question No: 23
Merge sort is stable sort, but not an in-place algorithm
True (p\#54) \rightarrow False

Question No: 24

In counting sort, once we know the ranks, we simply \qquad numbers to their final positions in an output array.
\rightarrow Delete \triangle copy (p\#57) $>$ Mark \quad arrange

Question No: 25

Dynamic programming algorithms need to store the results of intermediate sub-
problems. \triangle True p\#75) \rightarrow False

Question No: 26

A $\mathrm{p} \times \mathrm{q}$ matrix A can be multiplied with a $\mathrm{q} \times \mathrm{r}$ matrix B . The result will be a $\mathrm{p} \times \mathrm{r}$ matrix C .
There are ($\mathrm{p} . \mathrm{r}$) total entries in C and each takes \qquad to compute.
$\triangle \mathrm{O}(\mathbf{q})(\mathrm{p}=84) \quad \mathrm{O}(1)>\mathrm{O}_{\left(\mathrm{n}^{2}\right)} \rightarrow \mathrm{O}\left(\mathrm{n}^{3}\right)$

FINALTERM EXAMINATION

Question No: 2

Which of the following is calculated with bigo notation?
Lower bounds Upper bounds
Both upper and lower bound Medium bounds

Question No: 3

Merge sort makes two recursive calls. Which statement is true after these recursive calls finish, but before the merge step?
The array elements form a heap
Elements in each half of the array are sorted amongst themselves
Elements in the first half of the array are less than or equal to elements in the second half of the array

Muhammad Usama and DUA sister

None of the above

Question No: 4

Who invented Quick sort procedure?
Hoare Sedgewick Mellroy Coreman

Question No: 6

Consider the following Huffman Tree The binary code for the string TEA is
1000010
01100010
1000110
1110110

Question No: 7
If a graph has v vertices and e edges then to obtain a spanning tree we have to delete v edges.
$v \quad e+5$ edges $v+e$ edges. None of these

Question No: 8

Can an adjacency matrix for a directed graph ever not be square in shape?
Yes No

Question No: 9

One of the clever aspects of heaps is that they can be stored in arrays without using any Pointers (p\#40) constants variables functions

Question No: 10

Merge sort requires extra array storage, True p \#54) False
Mergesort is a stable algorithm but not an in-place algorithm. It requires extra array storage.

Question No: 11

Non-optimal or greedy algorithm for money change takes \qquad

$\mathbf{O}(\mathrm{k})$ (p\#99) $\quad \mathrm{O}(\mathrm{kN}) \quad \mathrm{O}(2 \mathrm{k}) \quad \mathrm{O}(\mathrm{N})$

Question No: 12

The Huffman codes provide a method of encoding data inefficiently when coded using ASCII standard. True Falase (p\# 99
The Huffman codes provide a method of encoding data efficiently.
Question No: 13
Using ASCII standard the string abacdaacac will be encoded with \qquad bits.
80 (p\# 99 $160 \quad 320 \quad 100$

Consider the string " abacdaacac". if the string is coded with ASCII codes, the message length would be10 $\times 8=80$ bits.

Question No: 14

Muhammad Usama and DUA sister

Using ASCII standard the string abacdaacac will be encoded with 160 bits.
True False (p\# 99)
Question No: 15
Using ASCII standard the string abacdaacac will be encoded with 320 bits.
True False (p\# 99)
Question No: 16
Using ASCII standard the string abacdaacac will be encoded with 100 bits.
True False (p\# 99)
Question No: 17
Using ASCII standard the string abacdaacac will be encoded with 32 bytes
True False (p\# 99)
Question No: 18
The greedy part of the Huffman encoding algorithm is to first find two nodes with smallest frequency.
True (p\# 100) False
Question No: 19
The greedy part of the Huffman encoding algorithm is to first find two nodes with character frequency
True False (p\# 100)
Question No: 20
Huffman algorithm uses a greedy approach to generate an antefix code T that minimizes the expected length $\mathrm{B}(\mathrm{T})$ of the encoded string.

True (p\# 102) False

Question No: 21

Depth first search is shortest path algorithm that works on un-weighted graphs.
True False (p\# 153)
The breadth-first-search algorithm we discussed earlier is a shortest-path algorithm that works on un-weighted graphs

Question No: 22
Dijkestra s single source shortest path algorithm works if all edges weights are nonnegative and there are no negative cost cycles.
True (p\# 159) False
Question No: 23
Dijkestra s single source shortest path algorithm works if all edges weights are negative and there are no negative cost cycles.
True (p\# 159) False

Muhammad Usama and DUA sister

Question No: 24

Floyd-Warshall algorithm is a dynamic programming algorithm; the genius of the algorithm is in the clever recursive formulation of the shortest path problem.
True (p\# 162) Flase
Question No: 25
Floyd-Warshall algorithm, as in the case with DP algorithms, we avoid recursive evaluation by generating a table for
k
ij d
True
Flase
the case with DP algorithms, we will avoid recursive evaluation by generating a table for $\mathbf{d}(\mathbf{k}) \mathbf{i j}$
Question No: 26
The term coloring came from the original application which was in map drawing. True (p\# 173) False

Question No: 27
In the clique cover problem, for two vertices to be in the same group, they must be \qquad each other.
Apart from Far from Near to Adjacent to (P\# 176)

Question No: 28

In the clique cover problem, for two vertices to be in the same group, they must be apart
from each other.
True False (P\# 176)
Question No: 29
The difference between Prims algorithm and Dijkstra s algorithm is that Dijkstra s
algorithm uses a different key.
True (P \# 156) not sure False

Question No: 30
The difference between Prim s algorithm and Dijkstra s algorithm is that Dijkstra s algorithm uses a same key.
True False (P \# 156) not sure

Quiz no\# 4 06-07-2012 solved by umair sid 100%
What algorithm technique is used in the implementation of kruskal solution for the MST?
Greedy Technique page \#142
in drsigne $G=(V, E)$; G has cycle if and only if

Muhammad Usama and DUA sister

The DFS forest has back edge
page \# 131
Question \# 9 of 10
Cross edge is :
(u, v) where u and v are not ancestor of one another (u, v) where u is ancesstor of v and v is not descendent of u.
(u, v) where u and v are not ancestor or descendent of one another pg 129
(u, v) where u and v are either ancestor or descendent of one another.

Forword edge is :
(u, v) where v ia a proper decendent of u in the tree.
Page \# 129
You have an adjective list for G , what is the time complexity to computer graph transpose $\mathrm{G}^{\wedge} \mathrm{T}$.?
($\mathrm{V}+\mathrm{E}$) \quad PAGE \# 138
Given an adjacency list for G, it is possible to compute G^{T} in $\Theta(V+E)$ time.

It takes $\mathrm{O}(\log \mathrm{V})$ to extract a vertex from the priority queue.
There is relationship between number of back edges and number of cycles in DFS
There is no relationship between back edges and number of cycles

Which is true statement:
Breadth first search is shortest path algorithm that works on un-weighted graphs
Depth first search is shortest path algorithm that works on un-weighted graphs.
Both of above are true.
Overall time for Kruskal is
$\Theta(\mathrm{E} \log \mathrm{E})=\Theta(\mathrm{E} \log \mathrm{V})$ if the graph is sparse. $\mathbf{P}-\mathbf{1 4 9}$
True

Question No: 1
An optimization problem is one in which you want to find,

- Not a solution
- An algorithm
- Good solution
- The best solution

Question No: 2
Although it requires more complicated data structures, Prim's algorithm for a minimum spanning tree is better than Kruskal's when the graph has a large number of vertices.

- True
- False

Question No: 3
If a problem is in NP, it must also be in P .

Made by

Muhammad Usama and DUA sister

- True
- False
- unknown

Question No: 5
If a graph has v vertices and e edges then to obtain a spanning tree we have to delete
v edges.

- $\mathrm{v}-\mathrm{e}+5$ edges
- $\mathrm{v}+\mathrm{e}$ edges.
- None of these

Question No: 6
Maximum number of vertices in a Directed Graph may be |V2|

- True
- False

Question No: 7
The Huffman algorithm finds a (n) \qquad solution.

- Optimal
- Non-optimal
- Exponential
- Polynomial

Question No: 8
The Huffman algorithm finds an exponential solution \rightarrow True \rightarrow False Question No: 9
The Huffman algorithm finds a polynomial solution \rightarrow True \rightarrow False Question No: 10
The greedy part of the Huffman encoding algorithm is to first find two nodes with larger frequency. \rightarrow True $>$ False
Question No: 11
The codeword assigned to characters by the Huffman algorithm have the property that no codeword is the postfix of any other. \quad True False
Question No: 12
Huffman algorithm uses a greedy approach to generate a postfix code T that minimizes
the expected length $\mathrm{B}(\mathrm{T})$ of the encoded string. \quad True $>$ False
Question No: 13
Shortest path problems can be solved efficiently by modeling the road map as a graph.

\rightarrow True - False

Question No: 14
Dijkestra's single source shortest path algorithm works if all edges weights are nonnegative and there are negative cost cycles. - True False
Question No: 15
Bellman-Ford allows negative weights edges and negative cost cycles.

- True - False

Question No: 16
The term "coloring" came form the original application which was in architectural design. \quad True $>$ False
Question No: 17
In the clique cover problem, for two vertices to be in the same group, they must be adjacent to each other. \quad True - False
Question No: 18

Muhammad Usama and DUA sister

Dijkstra's algorithm is operates by maintaining a subset of vertices $>$ True $>$ False
Question No: 19
The difference between Prim's algorithm and Dijkstra's algorithm is that Dijkstra's
algorithm uses a different key. \quad True \quad False
Question No: 21
We do sorting to,

- keep elements in random positions
- keep the algorithm run in linear order
- keep the algorithm run in $(\log n)$ order
- keep elements in increasing or decreasing order
- Question No: 22

After partitioning array in Quick sort, pivot is placed in a position such that

- Values smaller than pivot are on left and larger than pivot are on right
- Values larger than pivot are on left and smaller than pivot are on right
- Pivot is the first element of array
- Pivot is the last element of array

Question No: 23
Merge sort is stable sort, but not an in-place algorithm \rightarrow True $>$ False Question No: 24
In counting sort, once we know the ranks, we simply \qquad numbers to their final positions in an output array.

- Delete - copy \rightarrow Mark \quad arrange

Question No: 25
Dynamic programming algorithms need to store the results of intermediate subproblems. \quad True \downarrow False

Using ASCII standard the string abacdaacac will be encoded with \qquad bits. $80 \quad 160 \quad 320 \quad 100$

Using ASCII standard the string abacdaacac will be encoded with 160 bits. True False

Using ASCII standard the string abacdaacac will be encoded with 320 bits.
True False
Using ASCII standard the string abacdaacac will be encoded with 100 bits.
True False
The Huffman algorithm finds a (n) \qquad solution.

- Optimal \downarrow Non-optimal \quad Exponential $>$ Polynomial

Huffman algorithm uses a greedy approach to generate a postfix code T that minimizes the expected length $\mathrm{B}(\mathrm{T})$ of the encoded string.

- True
- False

2: Which statement is true?

- If a dynamic-programming problem satisfies the optimal-substructure property, then a locally optimal solution is globally optimal.

Made by

Muhammad Usama and DUA sister

- If a greedy choice property satisfies the optimal-substructure property, then a
locally optimal solution is globally optimal.
- both of above
- none of above

5: What general property of the list indicates that the graph has an isolated vertex?

- There is Null pointer at the end of list.
- The Isolated vertex is not handled in list.
- Only one value is entered in the list.
- There is at least one null list.

6: Which is true statement.

- Breadth first search is shortest path algorithm that works on un-weighted graphs.
- Depth first search is shortest path algorithm that works on un-weighted graphs.
- Both of above are true.
- None of above are true.

11: Using ASCII standard the string "abacdaacacwe" will be encoded with \qquad bits

- 64
- 128
- 96
- 120

13: the analysis of selection algorithm shows the total running time is indeed-----------in
n.

- arithmetic
- geometric
- linear
- orthogonal

14: back edge is
(1) In Prim's algorithm, the additional information maintained by the algorithm is the length of the shortest edge from vertex v to points already in the tree.
A) TRUE
B) FALSE
C) UNKNOWN
(2) Although it requires more complicated data structures, Prim's algorithm for a minimum spanning tree is better than Kruskal's when the graph has a large number of vertices.
A) TRUE.
B) FALSE
C: UNKNOWN
(3) If a problem is NP-complete, it must also be in NP.

Muhammad Usama and DUA sister

A) TRUE.
B) FALSE
C) UNKNOWN
(4) Which statement is true
(I) The running time of Bellman-Ford algorithm is T (VE)
(II) Both Dijkstra's algorithm and Bellman-Ford are based on performing repeated relaxations
(III) The 0-1 knapsack problem is hard to solve

- Only I • Only III • Both I and III • All of these

5) Which of the following arrays represent descending (max) heaps?
I. [10,7,7,2,4,6]
II. [10,7,6,2,4,7]
III. [10,6,7,2,4,6]
IV. [6,6,7,2,4,10]

- Only II
- Only IV
- Both II and IV
- Both I and III

6. Which of the following statement(s) is/are correct?
(a) $\mathrm{O}(\mathrm{n} \log \mathrm{n}+\mathrm{n} 2)=\mathrm{O}(\mathrm{n} 2)$.
(b) $\mathrm{O}(\mathrm{n} \log \mathrm{n}+\mathrm{n} 2)=\mathrm{O}(\mathrm{n} 2 \log 2 \mathrm{n})$
(c) $\mathrm{O}(\mathrm{c} \mathrm{n} 2)=\mathrm{O}(\mathrm{n} 2)$ where c is a constant.
(d) $\mathrm{O}(\mathrm{c} \mathrm{n} 2)=\mathrm{O}(\mathrm{c})$ where c is a constant.
(e) $\mathrm{O}(\mathrm{c})=\mathrm{O}(1)$ where c is a constant.

- Only (a) \& (e) • Both (c) and (e)

7. Which of the shortest path algorithms would be most appropriate for finding paths in the graph with negative edge weights and cycles?
I.Dijkstra's Algorithm
II. Bellman-Ford Algorithm
III. Floyd Warshall Algorithm

- Only II • Only III • Both II \& III

9. Suppose we have two problems A and B.Problem A is polynomial-time reducible and problem B is NP-complete. If we reduce problem A into B then problem A becomes NPcomplete - Yes • No
10. The recurrence relation of Tower of Hanoi is given below
? 1 if $\mathrm{n}=1$
$\mathrm{Tn}=$?
-133()
$2(\mathrm{~T} \mathrm{n}-+1)$ lif $\mathrm{n}>1$
In order to move a tower of 6 rings from one peg to another, how many moves are required?

- 15
- 7 • 63
- 32

12. Edge (u, v) is a forward edge if

- u is a proper descendant of v in the tree
- v is a proper descendant of u in the tree
- None of these

13. Is $22 \mathrm{n}=\mathrm{O}$?

2n-26??
14. If, in a DFS forest of digraph $G=(V, E), f[u]=f[v]$ for an edge $(u, v) ? E$ then the edge is called

- Back edge
- Forward edge
- Cross Edge
- Tree Edge
- None of these 16. Best and worst case times of an algorithm may be same.
- True •False

17. Can an adjacency matrix for a directed graph ever not be square in shape?

- Yes •No

Muhammad Usama and DUA sister

1. In which order we can sort?

- increasing order only - decreasing order only
- increasing order or decreasing order • both at the same time

2. heap is a left-complete binary tree that conforms to the \qquad

- increasing order only - decreasing order only • heap order • $(\log n)$ order

3. In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,

- T(n)
- T(n / 2)
- $\log \mathrm{n}$
- $\mathrm{n} / 2+\mathrm{n} / 4$

4. How much time merge sort takes for an array of numbers?
-T($\left.\mathrm{n}^{\wedge} 2\right) \quad$ • $\mathrm{T}(\mathrm{n}) \quad-\mathrm{T}(\log \mathrm{n}) \quad$ •T(n $\left.\log \mathbf{n}\right)$
5. One of the clever aspects of heaps is that they can be stored in arrays without using any
\qquad —.

- pointers
- constants
- variables
- functions

6. the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \qquad series in the analysis

- linear
- arithmetic
- geometric
- exponent

7:. Sieve Technique applies to problems where we are interested in finding a single item from a larger set of \qquad

- n items
- phases
- pointers
- constant

8. The sieve technique works in \qquad as follows

- phases • numbers • integers • routines

9. For the heap sort, access to nodes involves simple \qquad operations.

- arithmetic
- binary
- algebraic
- logarithmic

10. The analysis of Selection algorithm shows the total running time is indeed
\qquad in n ,

- arithmetic - geometric - linear • orthogonal

11. Divide-and-conquer as breaking the problem into a small number of

- pivot - Sieve • smaller sub problems • Selection

12. Slow sorting algorithms run in,

13. A heap is a left-complete binary tree that conforms to the

- increasing order only - decreasing order only - heap order • $(\log n)$ order 14. For the heap sort we store the tree nodes in
- level-order traversal • in-order traversal - pre-order traversal - post-order traversal 15. The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,
- divide-and-conquer, • decrease and conquer • greedy nature - 2-dimension Maxima

16. We do sorting to, Select correct option:

- keep elements in random positions - keep the algorithm run in linear order
- keep the algorithm run in $(\log n)$ order • keep elements in increasing or decreasing order 17. Sorting is one of the few problems where provable \qquad bonds exits on how fa
we can sort, Select correct option:
- upper • lower • average • $\log n$

For the heap sort we store the tree nodes in Select correct option:

- level-order traversal • in-order traversal • pre-order traversal • post-order traversal 20: In Sieve Technique we do not know which item is of interest Select correct option:
- True - False

21: Slow sorting algorithms run in,
-T($\left.\mathrm{n}^{\wedge} 2\right) \quad$ - $\mathrm{T}(\mathrm{n}) \quad \cdot \mathrm{T}(\log \mathrm{n}) \quad$ - $\mathrm{T}(\mathrm{n} \log \mathrm{n})$
22: Divide-and-conquer as breaking the problem into a small number of

Muhammad Usama and DUA sister

\author{

- pivot • Sieve • smaller sub problems • Selection
}

23: For the sieve technique we solve the problem,

- recursively • mathematically • precisely • accurately

24: we do sorting to,

- keep elements in random positions - keep the algorithm run in linear order
- keep the algorithm run in $(\log n)$ order - keep elements in increasing or decreasing order

25: The reason for introducing Sieve Technique algorithm is that it illustrates a very
important special case of,

- divide-and-conquer • decrease and conquer • greedy nature • 2-dimension Maxima

26: In Sieve Technique we do not know which item is of interest

- true - false

27: In the analysis of
Selection algorithm, we make a number of passes, in fact it could be as many as,

32: Sorting is one of the few problems where provable \qquad bonds exits on how fast
we can sort,

- upper • lower
- average
- $\log \mathrm{n}$

33: For the sieve technique we solve the problem,

- mathematically • precisely • accurately • recursively

34: Sieve Technique can be applied to selection problem?

- True
- False

37: Heaps can be stored in arrays without using any pointers; this is due to the
\qquad nature of the binary tree,

- left-complete
- right-complete
- tree nodes
- tree leaves

38: How many elements do we eliminate in each time for the Analysis of Selection algorithm?

- $\mathrm{n} / 2$ elements
- (n/2) + n elements
- $\mathrm{n} / 4$ elements
- 2 n elements

39: We do sorting to,

- keep elements in random positions - keep the algorithm run in linear order
- keep the algorithm run in $(\log n)$ order - keep elements in increasing or decreasing order 40: In which order we can sort?
- increasing order only - decreasing order only
- increasing order or decreasing order - both at the same time

41: : In the analysis of Selection algorithm, we make a number of passes, in fact it could
be as many as, $T(n) \quad-T(n / 2) \quad \log n \quad n / 2+n / 4$
42: The sieve technique is a special case, where the number of sub problems is just

- 5
- Many
- 1
- few
Question No: 1 no need

Random access machine or RAM is a/an

- Machine build by Al-Khwarizmi
- Mechanical machine
- Electronics machine

Muhammad Usama and DUA sister

- Mathematical model

Question No: 2

> is a graphical representation of an algorithm

- Σ notation
- Enotation
- Flowchart
- Asymptotic notation

Question No: 3
A RAM is an idealized machine with \qquad random-access memory.

- 256 MB
- 512 MB
- an infinitely large
- 100GB

Question No: 4
What type of instructions Random Access Machine (RAM) can execute? Choose best answer

- Algebraic and logic
- Geometric and arithmetic
- Arithmetic and logic
- Parallel and recursive

Question No: 5
What will be the total number of max comparisons if we run brute-force maxima algorithm with n elements?
$\rightarrow \mathrm{n}^{2}$

- $2 \mathrm{n} / \mathrm{n}$
- n
- 8 n

Question No: 6
What is the solution to the recurrence $T(n)=T(n / 2)+n$.

- $\mathrm{O}(\log n)$
- $\mathrm{O}(\mathrm{n})$
- O(nlogn)
- $\mathrm{O}(\mathrm{n} 2)$

Question No: 7
Consider the following code:
For($\mathrm{j}=1 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++$)
$\operatorname{For}(\mathrm{k}=1 ; \mathrm{k}<15 ; \mathrm{k}++)$
For(l=5; $1<\mathrm{n} ; 1++$)
\{
Do_something_constant();
\}
What is the order of execution for this code.

```
- O(n)
- O(n3)
- \(\mathrm{O}(\mathrm{n} 2 \log \mathrm{n})\)
```

Made by

Muhammad Usama and DUA sister

O(n2)
Question No: 8
Consider the following Algorithm:
Factorial (n)\{
if ($\mathrm{n}=1$)
return 1
else
return (n * Factorial(n-1))
\{
Recurrence for the following algorithm is:

- $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+1$
- $\mathrm{T}(\mathrm{n})=\mathrm{nT}(\mathrm{n}-1)+1$
- $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+\mathrm{n}$
- $T(n)=T(n(n-1))+1$

Question No: 9
What is the total time to heapify?
$-\mathrm{O}(\log \mathrm{n})$

- $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
- $\mathrm{O}(\mathrm{n} 2 \log \mathrm{n})$
- $\mathrm{O}(\log 2 \mathrm{n})$

Question No: 10
When we call heapify then at each level the comparison performed takes time

- It will take Θ (1)
- Time will vary according to the nature of input data
- It can not be predicted
- It will take $\Theta(\log \mathrm{n})$

CS502 - Fundamentals of Algorithms Quiz No. 5 Dated FEB $15{ }^{\text {TH }} 2013$

In in-place sorting algorithm is one that uses arrays for storage :
An additional array
No additional array (Right Answer)
Both of above may be true according to algorithm
More than 3 arrays of one dimension.

The running time of quick sort depends heavily on the selection of
No of inputs
Arrangement of elements in array
Size o elements

Muhammad Usama and DUA sister
 Pivot element (Right Answer)

In stable sorting algorithm
One array is used
In which duplicating elements are not handled.
More then one arrays are required.
Duplicating elements remain in same relative position after sorting. (Right Answer)
Which sorting algorithn is faster :
O($n^{\wedge} 2$)
O(nlogn)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$ (Right Answer)
$\mathrm{O}\left(\mathrm{n}^{\wedge}\right)$

In Quick sort algorithm, constants hidden in $\mathrm{T}(\mathrm{n} \lg \mathrm{n})$ are
Large
Medium
Not known
Small (Right Answer)
Quick sort is based on divide and conquer paradigm; we divide the problem on base of pivot element and:

There is explicit combine process as well to conquer the solutin. (Right Answer)

No work is needed to combine the sub-arrays, the array is already sorted
Merging the subarrays
None of above.

There is relationship between number of back edges and number of cycles in DFS Select correct option:
Both are equal.
Cycles are half of back edges.
Cycles are one fourth of back edges.
There is no relationship between back edges and number of cycle (Right Answer)
You have an adjacency list for G , what is the time complexity to compute Graph transpose $\mathrm{G}^{\wedge} \mathrm{T}$?
Select correct option:
(V+E) (Right Answer)
V.E

V

Muhammad Usama and DUA sister

E

Question \# 3 of 10 (Start time: 06:54:27 PM) Total Marks: 1
You have an adjacency list for G , what is the time complexity to compute Graph
transpose G^T.?
? (V + E) Right Answer)
?(V E)
?(V)
?(V^2)

What is the time complexity to extract a vertex from the priority queue in Prim's algorithm?
Select correct option:
log (V) (Right Answer)
V.V
E.E
$\log (E)$
Dijkstra's algorithm :
Select correct option:
Has greedy approach to find all shortest paths
Has both greedy and Dynamic approach to find all shortest paths
Has greedy approach to compute single source shortest paths to all other vertices (Right
Answer)
Has both greedy and dynamic approach to compute single source shortest paths to all other vertices.

What algorithm technique is used in the implementation of Kruskal solution for the MST?
Greedy Technique (Right Answer)
Divide-and-Conquer Technique
Dynamic Programming Technique
The algorithm combines more than one of the above techniques

What is the time complexity to extract a vertex from the priority queue in Prim's algorithm?
Select correct option:

```
O (log E)
?(V)
? (V+E)
O (log V) (Right Answer)
```


Muhammad Usama and DUA sister

Which is true statement in the following.
Kruskal algorithm is multiple source technique for finding MST.
Kruskal's algorithm is used to find minimum spanning tree of a graph, time complexity of this algorithm is $\mathrm{O}(\mathrm{EV})$
Both of above

```
Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best Tree edge) when the graph has relatively few edges ) (Right Answer)
```

The relationship between number of back edges and number of cycles in DFS is, Both are equal
Back edges are half of cycles
Back edges are one quarter of cycles
There is no relationship between no. of edges and cycles (Right Answer)
Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best tree edge) when the graph has relatively few edges.

True (Right Answer)

False

What is the time complexity to extract a vertex from the priority queue in Prim's algorithm?
Select correct option:

$\log (\mathrm{V})$

V.V
E.E
$\log (E)$

Suppose that a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is implemented using adjacency lists. What is the complexity of a breadth-first traversal of G ?
Select correct option:

```
O(|V |^2)
O(|V | |E|) (Right Answer)
O(|V |^2|E|)
O(|V|+|E|)
```

What is generally true of Adjacency List and Adjacency Matrix representations of graphs?
Select correct option:
Lists require less space than matrices but take longer to find the weight of an edge (v1,v2)
Lists require less space than matrices and they are faster to find the weight of an edge (v1,
v2) Right Answer)

Muhammad Usama and DUA sister

Lists require more space than matrices and they take longer to find the weight of an edge (v1, v2)
Lists require more space than matrices but are faster to find the weight of an edge ($\mathrm{v} 1, \mathrm{v} 2$)

What general property of the list indicates that the graph has an isolated vertex?
Select correct option:
There is Null pointer at the end of list.
The Isolated vertex is not handled in list. (not Sure)
Only one value is entered in the list.
There is at least one null list.

A dense undirected graph is:
Select correct option:
A graph in which $\mathrm{E}=\mathrm{O}\left(\mathrm{V}^{\wedge} 2\right)$ (Right Answer)
A graph in which $\mathrm{E}=\mathrm{O}(\mathrm{V})$
A graph in which $\mathrm{E}=\mathrm{O}(\log \mathrm{V})$
All items above may be used to characterize a dense undirected graph

In digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$;G has cycle if and only if
Select correct option:
The DFS forest has forward edge.

The DFS forest has back edge (Right Answer)

The DFS forest has both back and forward edge
BFS forest has forward edge

Back edge is:
Select correct option:
(u, v) where v is an ancestor of u in the tree. (Right Answer)
(u, v) where u is an ancesstor of v in the tree.
(u, v) where v is an predcessor of u in the tree.
None of above

Using ASCII standard the string "abacdaacacwe" will be encoded with \qquad bits
Select correct option:
64
128 (Right Answer)
96
120

Cross edge is :
Select correct option:

Made by

Muhammad Usama and DUA sister

(u, v) where u and v are not ancestor of one another
(u, v) where u is ancesstor of v and v is not descendent of u.
(u, v) where u and v are not ancestor or descendent of one another (Right Answer)
(u, v) where u and v are either ancestor or descendent of one another.

Which statement is true?
Select correct option:
If a dynamic-programming problem satisfies the optimal-substructure property, then a locally optimal solution is globally optimal.
If a greedy choice property satisfies the optimal-substructure property, then a locally optimal solution is globally optimal.

Both of above Right Answer)

None of above
10 If you find yourself in maze the better traversel approach will bE

A dense undirected graph is:
Select correct option:

A graph in which $E=O(V \wedge 2)$ (Right Answer)

A graph in which $\mathrm{E}=\mathrm{O}(\mathrm{V})$
A graph in which $\mathrm{E}=\mathrm{O}(\log \mathrm{V})$
All items above may be used to characterize a dense undirected graph

Which is true statement.
Select correct option:
Breadth first search is shortest path algorithm that works on un-weighted graphs (Right

Answer)

Depth first search is shortest path algorithm that works on un-weighted graphs.
Both of above are true.
None of above are true.

Forward edge is:
Select correct option:
(u, v) where u is a proper descendent of v in the tree.
(u, v) where v is a proper descendent of u in the tree. (Right Answer)
(u, v) where v is a proper ancesstor of u in the tree.
(u, v) where u is a proper ancesstor of v in the tree.

Back edge is:
Select correct option:

(u, v) where v is an ancestor of u in the tree. (Right Answer)

(u, v) where u is an ancesstor of v in the tree.
(u, v) where v is an predcessor of u in the tree.
None of above

Muhammad Usama and DUA sister

Suppose that a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is implemented using adjacency lists. What is the complexity of a breadth-first traversal of G ?
Select correct option:
O(|V |^2)
O(|V | |E|) (Right Answer)
O(|V|^2|E|)
$O(|V|+|E|)$
In digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$;G has cycle if and only if
Select correct option:
The DFS forest has forward edge.

The DFS forest has back edge (Right Answer)

The DFS forest has both back and forward edge
BFS forest has forward edge

What general property of the list indicates that the graph has an isolated vertex?
Select correct option:
There is Null pointer at the end of list.

The Isolated vertex is not handled in list. (not Sure)

Only one value is entered in the list.
There is at least one null list.

If you find yourself in maze the better traversel approach will be :
BFS
BFS and DFS both are valid (Right Answer)
Level order
DFS

Cross edge is :
(u, v) where u and v are not ancestor of one another
(u, v) where u is ancesstor of v and v is not descendent of u.
(u, v) where u and v are not ancestor or descendent of one another (Right Answer)
(u, v) where u and v are either ancestor or descendent of one another.

What algorithm technique is used in the implementation of Kruskal solution for the MST?

Greedy Technique (Right Answer)

Divide-and-Conquer Technique
Dynamic Programming Technique
The algorithm combines more than one of the above techniques

Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best tree edge) when the graph has relatively few

Muhammad Usama and DUA sister

True (Right Answer)

False

You have an adjacency list for G, what is the time complexity to compute Graph transpose G^T.?
? (V + E) Right Answer)
? (VE)
? (V)
? (V^2)

A digraph is strongly connected under what condition?
A digraph is strongly connected if for every pair of vertices $u, v e V, u$ can reach v.

A digraph is strongly connected if for every pair of vertices $u, v e v, u$ can reach v and vice versa. (Right Answer)

A digraph is strongly connected if for at least one pair of vertex $u, v e V$, u can reach v and vice versa.
A digraph is strongly connected if at least one third pair of vertices $u, v e V, u$ can reach v and vice versa.

The relationship between number of back edges and number of cycles in DFS is, Both are equal
Back edges are half of cycles
Back edges are one quarter of cycles

There is no relationship between no. of edges and cycles (Right Answer)

What algorithm technique is used in the implementation of Kruskal solution for the MST?

Greedy Technique (Right Answer)

Divide-and-Conquer Technique
Dynamic Programming Technique
The algorithm combines more than one of the above techniques

In in-place sorting algorithm is one that uses arrays for storage :
An additional array
No additional array (Right Answer)
Both of above may be true according to algorithm
More than 3 arrays of one dimension.

The running time of quick sort depends heavily on the selection of
No of inputs
Arrangement of elements in array
Size o elements
Pivot element (Right Answer)

Muhammad Usama and DUA sister

In stable sorting algorithm
One array is used
In which duplicating elements are not handled.
More then one arrays are required.
Duplicating elements remain in same relative position after sorting. (Right Answer)
Which sorting algorithn is faster :
$\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
O(nlogn)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$ (Right Answer)
$\mathrm{O}\left(\mathrm{n}^{\wedge}\right)$

In Quick sort algorithm, constants hidden in $\mathrm{T}(\mathrm{n} \lg \mathrm{n})$ are

Large
Medium
Not known
Small (Right Answer)
Quick sort is based on divide and conquer paradigm; we divide the problem on base of pivot element and:

There is explicit combine process as well to conquer the solutin. (Right Answer)

No work is needed to combine the sub-arrays, the array is already sorted
Merging the subarrays
None of above.

There is relationship between number of back edges and number of cycles in DFS
Select correct option:
Both are equal.
Cycles are half of back edges.
Cycles are one fourth of back edges.

```
There is no relationship between back edges and number of cycle (Right Answer)
```

You have an adjacency list for G, what is the time complexity to compute Graph transpose G^T ?
Select correct option:
(V+E) (Right Answer)
V.E

V
E

Muhammad Usama and DUA sister

Question \# 3 of 10 (Start time: 06:54:27 PM) Total Marks: 1
You have an adjacency list for G , what is the time complexity to compute Graph
transpose $\mathrm{G}^{\wedge} \mathrm{T}$.?

```
?(V + E) Right Answer)
?(V E)
?(V)
?(V^2)
```

What is the time complexity to extract a vertex from the priority queue in Prim's algorithm?
Select correct option:
log (V) (Right Answer)
V.V
E.E
$\log (E)$

Dijkstra's algorithm :
Select correct option:
Has greedy approach to find all shortest paths
Has both greedy and Dynamic approach to find all shortest paths

Has greedy approach to compute single source shortest paths to all other vertices (Right Answer)

Has both greedy and dynamic approach to compute single source shortest paths to all other vertices.

What algorithm technique is used in the implementation of Kruskal solution for the MST?

Greedy Technique (Right Answer)

Divide-and-Conquer Technique
Dynamic Programming Technique
The algorithm combines more than one of the above techniques

What is the time complexity to extract a vertex from the priority queue in Prim's algorithm?
Select correct option:
O ($\log \mathrm{E}$)
? (V)
? (V+E)
O ($\log \mathrm{V}$) (Right Answer)

Which is true statement in the following.

Made by

Muhammad Usama and DUA sister

Kruskal algorithm is multiple source technique for finding MST.
Kruskal's algorithm is used to find minimum spanning tree of a graph, time complexity of this algorithm is $\mathrm{O}(\mathrm{EV})$
Both of above
Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best Tree edge) when the graph has relatively few edges) (Right Answer)

The relationship between number of back edges and number of cycles in DFS is, Both are equal
Back edges are half of cycles
Back edges are one quarter of cycles
There is no relationship between no. of edges and cycles (Right Answer)

Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best tree edge) when the graph has relatively few edges.
True (Right Answer)
False

What is the time complexity to extract a vertex from the priority queue in Prim's algorithm?
Select correct option:
$\log (\mathrm{V})$
V.V
E.E
$\log (E)$
Suppose that a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is implemented using adjacency lists. What is the complexity of a breadth-first traversal of G ?
Select correct option:
O(|V|^2)
O(|V | |E|) (Right Answer)
O(|V|^2|E|)
$O(|V|+|E|)$

What is generally true of Adjacency List and Adjacency Matrix representations of graphs?
Select correct option:
Lists require less space than matrices but take longer to find the weight of an edge (v1,v2)
Lists require less space than matrices and they are faster to find the weight of an edge (v1,
v2) Right Answer)
Lists require more space than matrices and they take longer to find the weight of an edge (v1, v2)
Lists require more space than matrices but are faster to find the weight of an edge (v1, v2)

Muhammad Usama and DUA sister

What general property of the list indicates that the graph has an isolated vertex?
Select correct option:
There is Null pointer at the end of list.
The Isolated vertex is not handled in list. (not Sure)
Only one value is entered in the list.
There is at least one null list.

A dense undirected graph is:
Select correct option:
A graph in which $\mathrm{E}=\mathrm{O}\left(\mathrm{V}^{\wedge} 2\right)$ (Right Answer)
A graph in which $\mathrm{E}=\mathrm{O}(\mathrm{V})$
A graph in which $\mathrm{E}=\mathrm{O}(\log \mathrm{V})$
All items above may be used to characterize a dense undirected graph

In digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$;G has cycle if and only if
Select correct option:
The DFS forest has forward edge.

The DFS forest has back edge (Right Answer)

The DFS forest has both back and forward edge
BFS forest has forward edge
Back edge is:
Select correct option:
(u, v) where v is ancestor of u in the tree. (Right Answer)
(u, v) where u is an ancesstor of v in the tree.
(u, v) where v is an predcessor of u in the tree.
None of above

Using ASCII standard the string "abacdaacacwe" will be encoded with \qquad bits Select correct option:
64
128 (Right Answer)
96
120

Cross edge is :
Select correct option:
(u, v) where u and v are not ancestor of one another
(u, v) where u is ancesstor of v and v is not descendent of u.
(u, v) where u and v are not ancestor or descendent of one another (Right Answer)
(u, v) where u and v are either ancestor or descendent of one another.

Muhammad Usama and DUA sister

Which statement is true?
Select correct option:
If a dynamic-programming problem satisfies the optimal-substructure property, then a locally optimal solution is globally optimal.
If a greedy choice property satisfies the optimal-substructure property, then a locally optimal solution is globally optimal.

Both of above Right Answer)

None of above

10 If you find yourself in maze the better traversel approach will bE

A dense undirected graph is:
Select correct option:
A graph in which $\mathrm{E}=\mathrm{O}\left(\mathrm{V}^{\wedge} 2\right)$ (Right Answer)
A graph in which $\mathrm{E}=\mathrm{O}(\mathrm{V})$
A graph in which $\mathrm{E}=\mathrm{O}(\log \mathrm{V})$
All items above may be used to characterize a dense undirected graph
Which is true statement.
Select correct option:

Breadth first search is shortest path algorithm that works on un-weighted graphs (Right

Answer)

Depth first search is shortest path algorithm that works on un-weighted graphs.
Both of above are true.
None of above are true.

Forward edge is:
Select correct option:
(u, v) where u is a proper descendent of v in the tree.
(u, v) where v is a proper descendent of u in the tree. (Right Answer)
(u, v) where v is a proper ancesstor of u in the tree.
(u, v) where u is a proper ancesstor of v in the tree.

Back edge is:
Select correct option:
(u, v) where v is ancestor of u in the tree. (Right Answer)
(u, v) where u is an ancesstor of v in the tree.
(u, v) where v is an predcessor of u in the tree.
None of above

Suppose that a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is implemented using adjacency lists. What is the complexity of a breadth-first traversal of G ?

Muhammad Usama and DUA sister

Select correct option:
O(|V |^2)
O(|V | |E|) (Right Answer)
O(|V |^2|E|)
$O(|V|+|E|)$
In digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$; G has cycle if and only if
Select correct option:
The DFS forest has forward edge.

The DFS forest has back edge (Right Answer)

The DFS forest has both back and forward edge
BFS forest has forward edge
What general property of the list indicates that the graph has an isolated vertex?
Select correct option:
There is Null pointer at the end of list.
The Isolated vertex is not handled in list. (not Sure)
Only one value is entered in the list.
There is at least one null list.

If you find yourself in maze the better traversel approach will be :
BFS
BFS and DFS both are valid (Right Answer)
Level order
DFS

Cross edge is :
(u, v) where u and v are not ancestor of one another
(u, v) where u is ancesstor of v and v is not descendent of u.
(u, v) where u and v are not ancestor or descendent of one another (Right Answer)
(u, v) where u and v are either ancestor or descendent of one another.

What algorithm technique is used in the implementation of Kruskal solution for the MST?

Greedy Technique (Right Answer)

Divide-and-Conquer Technique
Dynamic Programming Technique
The algorithm combines more than one of the above techniques

Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best tree edge)
when the graph has relatively few

True (Right Answer)

False

Muhammad Usama and DUA sister

You have an adjacency list for G , what is the time complexity to compute Graph transpose $\mathrm{G}^{\wedge} \mathrm{T}$.?
? $(\mathrm{V}+\mathrm{E})$ Right Answer)
? (V E)
? (V)
? (V^2)
A digraph is strongly connected under what condition?
A digraph is strongly connected if for every pair of vertices $u, v e V, u$ can reach v.

A digraph is strongly connected if for every pair of vertices $u, v e v, u$ can reach v and vice
 versa. (Right Answer)

A digraph is strongly connected if for at least one pair of vertex $u, v e V$, u can reach v and vice versa.
A digraph is strongly connected if at least one third pair of vertices $u, v e V, u$ can reach v and vice versa.

The relationship between number of back edges and number of cycles in DFS is, Both are equal
Back edges are half of cycles
Back edges are one quarter of cycles
There is no relationship between no. of edges and cycles (Right Answer)

What algorithm technique is used in the implementation of Kruskal solution for the MST?

Greedy Technique (Right Answer)

Divide-and-Conquer Technique
Dynamic Programming Technique
The algorithm combines more than one of the above techniques
Which may be stable sort:
Select correct option:
Bubble sort
Insertion sort

Both of above

Selection sort
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \qquad series in the analysis, Select correct option:
linear
arithmetic
geometric
exponent

Made by

Muhammad Usama and DUA sister

In Quick sort algorithm, constants hidden in $\mathrm{T}(\mathrm{n} \lg \mathrm{n})$ are Select correct option:

Large
Medium
Not known
small

How much time merge sort takes for an array of numbers?
Select correct option:
$T\left(n^{\wedge} 2\right)$
$T(n)$
$T(\log n)$
$T(n \log n)$

Counting sort has time complexity:
Select correct option:
$\mathrm{O}(\mathrm{n})$
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
O(k)
O(nlogn)

In which order we can sort?
Select correct option:
increasing order only
decreasing order only
increasing order or decreasing order
both at the same time

A (an) \qquad is a left-complete binary tree that conforms to the heap order Select correct option:
heap
binary tree
binary search tree
array

Muhammad Usama and DUA sister

The analysis of Selection algorithm shows the total running time is indeed \qquad in n , Select correct option:
arithmetic
geometric
linear
orthogonal

Quick sort is based on divide and conquer paradigm; we divide the problem on base of pivot element and:
Select correct option:

There is explicit combine process as well to conquer the solution.
No work is needed to combine the sub-arrays, the array is already sorted
Merging the sub arrays
None of above.

Sorting is one of the few problems where provable \qquad bonds exits on how fast we can sort,
Select correct option:
upper
lower
average
$\log n$
In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
T(n)
$T(n / 2)$
$\log n$
n/2+n/4

Quick sort is based on divide and conquer paradigm; we divide the problem on base of pivot element and:
There is explicit combine process as w ell to conquer
No w ork is needed to combine the sub-arrays, the a
Merging the subarrays

None of above

The number of nodes in a complete binary tree of height h is

Made by

Muhammad Usama and DUA sister

$\mathbf{2 n}^{\wedge}(\mathrm{h}+1)$ - 1
2 * $(\mathrm{h}+1)-1$
2 * $(h+1)$
$\left((h+1)^{\wedge} 2\right)-1$

How many elements do we eliminate in each time for the Analysis of Selection algorithm?
$\mathrm{n} / 2$ elements
($\mathrm{n} / 2$) +n elements
$\mathrm{n} / 4$ elements
$2 n$ elements

Which sorting algorithn is faster :
$\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
O(nlogn)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
$O\left(n^{\wedge} 3\right)$

We do sorting to,
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order
Slow sorting algorithms run in,
$T\left(n^{\wedge} 2\right)$
T(n)
$T(\log n)$
$T(n \log n)$
One of the clever aspects of heaps is that they can be stored in arrays without using any

Pointers

Constants
Variables
Functions

Counting sort is suitable to sort the elements in range 1 to k :
K is large
K is small
K may be large or small
None

Made by

Muhammad Usama and DUA sister

We do sorting to, Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

Question \# 2 of 10 (Start time: 06:19:38 PM) Total Marks: 1
Heaps can be stored in arrays without using any pointers; this is due to the \qquad nature of the binary tree,
Select correct option:

left-complete

right-complete
tree nodes
tree leaves

Question \# 3 of 10 (Start time: 06:20:18 PM) Total Marks: 1
Sieve Technique can be applied to selection problem?
Select correct option:

True

False

Question \# 4 of 10 (Start time: 06:21:10 PM) Total Marks: 1
A heap is a left-complete binary tree that conforms to the \qquad Select correct option:
increasing order only
decreasing order only
heap order
($\log \mathrm{n}$) order

Question \# 5 of 10 (Start time: 06:21:39 PM) Total Marks: 1
A (an) \qquad is a left-complete binary tree that conforms to the heap order Select correct option:

heap

binary tree
binary search tree
array

Question \# 6 of 10 (Start time: 06:22:04 PM) Total Marks: 1

Muhammad Usama and DUA sister

Divide-and-conquer as breaking the problem into a small number of Select correct option:
pivot
Sieve
smaller sub problems
Selection

Question \# 7 of 10 (Start time: 06:22:40 PM) Total Marks: 1
In Sieve Technique we do not know which item is of interest
Select correct option:

True

False

Question \# 8 of 10 (Start time: 06:23:26 PM) Total Marks: 1
The recurrence relation of Tower of Hanoi is given below $T(n)=\{1$ if $n=1$ and $2 T(n-1)$ if $n>1$ In order to move a tower of 5 rings from one peg to another, how many ring moves are required? Select correct option:

16
10
32
31

Question \# 9 of 10 (Start time: 06:24:44 PM) Total Marks: 1
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \qquad series in the analysis,
Select correct option:
linear
arithmetic
geometric
exponent

Question \# 10 of 10 (Start time: 06:25:43 PM) Total Marks: 1
For the heap sort, access to nodes involves simple \qquad operations.
Select correct option:
arithmetic
binary
algebraic
logarithmic

Made by

Muhammad Usama and DUA sister

For the sieve technique we solve the problem,
Select correct option:
recursively
mathematically
precisely
accurately
The sieve technique works in \qquad as follows
Select correct option:
phases
numbers
integers
routines
Slow sorting algorithms run in,
Select correct option:
$T\left(n^{\wedge} 2\right)$
T(n)
$T(\log n)$
A (an) \qquad is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \qquad series in the analysis,
Select correct option:
linear
arithmetic
geometric
exponent

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
Select correct option:
T(n)
$T(n / 2)$
$\log n$
n/2+n/4

The sieve technique is a special case, where the number of sub problems is just Select correct option:
5
many

Muhammad Usama and DUA sister

1

few

In which order we can sort?
Select correct option:
increasing order only
decreasing order only
increasing order or decreasing order
both at the same time

The recurrence relation of Tower of Hanoi is given below $T(n)=\{1$ if $n=1$ and $2 T(n-1)$ if $n>1$ In order to move a tower of 5 rings from one peg to another, how many ring moves are required? Select correct option:
16
10
32
31

Analysis of Selection algorithm ends up with, Select correct option:
T(n)
$\mathrm{T}(1 / 1+\mathrm{n})$
$\mathrm{T}(\mathrm{n} / 2)$
$T((n / 2)+n)$

We do sorting to, Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n$) order
keep elements in increasing or decreasing order

Divide-and-conquer as breaking the problem into a small number of Select correct option:
pivot
Sieve
smaller sub problems
Selection
\qquad in n ,

Muhammad Usama and DUA sister

Select correct option:
arithmetic
geometric
linear
orthogonal

How many elements do we eliminate in each time for the Analysis of Selection algorithm? Select correct option:
n / 2 elements
($\mathrm{n} / 2$) +n elements
$n / 4$ elements
$2 n$ elements

Sieve Technique can be applied to selection problem?
Select correct option:

True

false

For the heap sort we store the tree nodes in
Select correct option:
level-order traversal
in-order traversal
pre-order traversal
post-order traversal

One of the clever aspects of heaps is that they can be stored in arrays without using any
Select correct option:
pointers
constants
variables
functions

Muhammad Usama and DUA sister

A (an) \qquad is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array
Divide-and-conquer as breaking the problem into a small number of Select correct option:
pivot
Sieve
smaller sub problems
Selection

Heaps can be stored in arrays without using any pointers; this is due to the \qquad nature of the binary tree,
Select correct option:

left-complete

right-complete
tree nodes
tree leaves

For the sieve technique we solve the problem,
Select correct option:
recursively
mathematically
precisely
accurately
A heap is a left-complete binary tree that conforms to the \qquad
Select correct option:
increasing order only
decreasing order only
heap order
($\log \mathrm{n}$) order

We do sorting to, Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

Muhammad Usama and DUA sister

How many elements do we eliminate in each time for the Analysis of Selection algorithm? Select correct option:
n/2 elements
($\mathrm{n} / 2$) +n elements
$\mathrm{n} / 4$ elements
$2 n$ elements

How much time merge sort takes for an array of numbers?
Select correct option:
$T\left(n^{\wedge} 2\right)$
T(n)
$T(\log n)$
$T(n \log n)$

The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,
Select correct option:
divide-and-conquer
decrease and conquer
greedy nature
2-dimension Maxima

Question \# 1 of 10 (Start time: 08:17:23 AM) Total M a r k s: 1
The number of nodes in a complete binary tree of height h is
Select correct option:
$\mathbf{2}^{\wedge}(\mathrm{h}+1)$ - 1
2 * $(\mathrm{h}+1)-1$
2 * $(h+1)$
$\left((h+1)^{\wedge} 2\right)-1$
Question \# 2 of 10 (Start time: 08:18:46 AM) Total M a rks: 1
A (an) \qquad is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array
Question \# 3 of 10 (Start time: 08:19:38 AM) Total M a r k s: 1
In Sieve Technique we do not know which item is of interest
Select correct option:

Muhammad Usama and DUA sister

True
False

Question \# 4 of 10 (Start time: 08:20:33 AM) Total M a r k s: 1
Heaps can be stored in arrays without using any pointers; this is due to the
\qquad nature of the binary tree,
Select correct option:
left-complete
right-complete
tree nodes
tree leaves

Question \# 5 of 10 (Start time: 08:21:59 AM) Total M a r k s: 1
In the analysis of Selection algorithm, we make a number of passes, in fact it could be as
many as,
Select correct option:
T(n)
$T(n / 2)$
$\log n$
$n / 2+n / 4$
Question \# 6 of 10 (Start time: 08:23:01 AM) Total M a r k s: 1
For the sieve technique we solve the problem,
Select correct option:
recursively
mathematically
precisely
accurately
Theta asymptotic notation for $\mathrm{T}(\mathrm{n})$:
Select correct option:
Set of functions described by: $c 1 g(n)$ Set of functions described by $c 1 g(n)>=f(n)$ for $c 1 s$
Theta for $\mathrm{T}(\mathrm{n})$ is actually upper and worst case comp
Set of functions described by:
c1g(n)
Question \# 8 of 10 (Start time: 08:24:39 AM) Total M a r k s: 1
The sieve technique is a special case, where the number of sub problems is just
Select correct option:
5
many
1
few
Question \# 9 of 10 (Start time: 08:25:54 AM) Total M a r k s: 1
Sieve Technique applies to problems where we are interested in finding a single item from a

Muhammad Usama and DUA sister

larger set of \qquad
Select correct option:
n items
phases
pointers
constant

Question \# 10 of 10 (Start time: 08:26:44 AM) Total M a r k s: 1
The sieve technique works in \qquad as follows
Select correct option:
phases
numbers
integers
routines

Memorization is?
To store previous results for future use
To avoid this unnecessary repetitions by writing down the results of recursive calls and looking them up again if we need them later
To make the process accurate
None of the above
Question \# 2 of 10 Total M a rks: 1
Which sorting algorithm is faster
O ($\mathrm{n} \log \mathrm{n}$)
$0 n^{\wedge} 2$
0 ($\mathrm{n}+\mathrm{k}$)
$0 n^{\wedge} 3$

Quick sort is
Stable \& in place
Not stable but in place
Stable but not in place
Some time stable \& some times in place
One example of in place but not stable algorithm is
Merger Sort
Quick Sort
Continuation Sort
Bubble Sort

In Quick Sort Constants hidden in $\mathrm{T}(\mathrm{n} \log \mathrm{n})$ are
Large
Medium

Muhammad Usama and DUA sister

Small
Not Known

Continuation sort is suitable to sort the elements in range 1 to k
K is Large
K is not known
K may be small or large
K is small

In stable sorting algorithm.
One array is used
More than one arrays are required
Duplicating elements not handled
duplicate elements remain in the same relative position after sorting

Which may be a stable sort?
Merger
Insertion
Both above
None of the above

An in place sorting algorithm is one that uses \qquad arrays for storage
Two dimensional arrays
More than one array
No Additional Array
None of the above

Continuing sort has time complexity of ?
O(n)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
O(nlogn)
$\mathrm{O}(\mathrm{k})$

We do sorting to,
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

In Sieve Technique we donot know which item is of interest

True

Muhammad Usama and DUA sister

False
A (an) \qquad is a left-complete binary tree that conforms to the
heap order
heap
binary tree
binary search tree
array
27. The sieve technique works in \qquad as follows phases
numbers
integers
routines

For the sieve technique we solve the problem,
recursively
mathematically
precisely
accurately
29. For the heap sort, access to nodes involves simple \qquad operations.
arithmetic
binary
algebraic
logarithmic

The analysis of Selection algorithm shows the total running time is indeed \qquad in n, \backslash
arithmetic
geometric
linear
orthogonal

For the heap sort, access to nodes involves simple \qquad operations.
Select correct option:
arithmetic
binary
algebraic
logarithmic
Sieve Technique applies to problems where we are interested in finding a single item from a larger set of \qquad

Muhammad Usama and DUA sister

Select correct option:
n items
phases
pointers
constant

Question \# 9 of 10 (Start time: 07:45:36 AM) Total Marks: 1
In Sieve Technique we do not know which item is of interest
Select correct option:

True

False

How much time merge sort takes for an array of numbers?
Select correct option:
$T\left(n^{\wedge} 2\right)$
$\mathrm{T}(\mathrm{n})$
$T(\log n)$
$T(n \log n)$

For the heap sort we store the tree nodes in
Select correct option:
level-order traversal
in-order traversal
pre-order traversal
post-order traversal

Sorting is one of the few problems where provable \qquad bonds exits on how fast we can sort,
Select correct option:
upper
lower
average
$\log n$
single item from a larger set of \qquad
Select correct option:
n items
phases
pointers
constant

A heap is a left-complete binary tree that conforms to the \qquad Select correct option:

Made by

Muhammad Usama and DUA sister

increasing order only
decreasing order only
heap order
($\log \mathrm{n}$) order

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
Select correct option:
T(n)
$T(n / 2)$
$\log n$
n/2+n/4
The reason for introducing Sieve Technique algorithm is that it illustrates a
very important special case of,
Select correct option:
divide-and-conquer
decrease and conquer
greedy nature
2-dimension Maxima

The sieve technique works in \qquad as follows
Select correct option:
phases
numbers
integers
routines
For the Sieve Technique we take time
Select correct option:
T(nk)
$\mathrm{T}(\mathrm{n} / 3$)
$\mathrm{n}^{\wedge} 2$
n/3

In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \qquad series in the analysis,
linear
arithmetic
geometric
exponent

Analysis of Selection algorithm ends up with, Select correct option:

Muhammad Usama and DUA sister

$T(n)$
$\mathrm{T}(1 / 1+\mathrm{n})$
$\mathrm{T}(\mathrm{n} / 2)$
$T((n / 2)+n)$

Quiz Start Time: 07:23 PM
Time Left 90
sec(s)
Question \# 1 of 10 (Start time: 07:24:03 PM) Total M a r k s: 1
In in-place sorting algorithm is one that uses arrays for storage :
Select correct option:
An additional array
No additional array
Both of above may be true according to algorithm
More than 3 arrays of one dimension.

Time Left 89
$\mathrm{sec}(\mathrm{s})$
Question \# 2 of 10 (Start time: 07:25:20 PM) Total M a r k s: 1
Which sorting algorithn is faster :
Select correct option:
$\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
O(nlogn)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
$\mathrm{O}\left(\mathrm{n}^{\wedge}\right)$
In stable sorting algorithm:
Select correct option:
One array is used
In which duplicating elements are not handled.
More then one arrays are required.
Duplicating elements remain in same relative posistion after sorting.
Counting sort has time complexity:
Select correct option:
O(n)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
$\mathrm{O}(\mathrm{k})$
O(nlogn)

Counting sort is suitable to sort the elements in range 1 to k :
Select correct option:
K is large

Muhammad Usama and DUA sister

K is small
K may be large or small
None

Memorization is :
Select correct option:
To store previous results for further use.
To avoid unnecessary repetitions by writing down the results of recursive calls and looking them again if needed later
To make the process accurate.
None of the above

The running time of quick sort depends heavily on the selection of Select correct option:
No of inputs
Arrangement of elements in array
Size o elements
Pivot elements

Which may be stable sort:
Select correct option:
Bubble sort
Insertion sort
Both of above

In Quick sort algorithm, constants hidden in T(n lg n) are
Select correct option:
Large
Medium
Not known
small

Quick sort is
Select correct option:
Stable and In place
Not stable but in place
Stable and not in place
Some time in place and send some time stable

For the Sieve Technique we take time

Muhammad Usama and DUA sister

T(nk)
$\mathrm{T}(\mathrm{n} / 3$)
$n^{\wedge} 2$
n/3

The sieve technique is a special case, where the number of sub problems is just Select correct option:
5
Many
1
Few

The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,
Select correct option:
divide-and-conquer
decrease and conquer
greedy nature
2-dimension Maxima

Quick sort is
Select correct option:
Stable and In place
Not stable but in place
Stable and not in place
Some time in place and send some time stable

Memoization is :
Select correct option:
To store previous results for further use.
To avoid unnecessary repetitions by writing down the results of recursive calls and looking them again if needed later
To make the process accurate.
None of the above

One Example of in place but not stable sort is
Quick
Heap
Merge
Bubble

Made by

Muhammad Usama and DUA sister

The running time of quick sort depends heavily on the selection of Select correct option:
No of inputs
Arrangement of elements in array
Size o elements
Pivot elements

Question \# 9 of 10 (Start time: 07:39:07 PM) Total M a r k s: 1
In Quick sort algorithm, constants hidden in T(n lg n) are
Select correct option:
Large
Medium
Not known
Small

Theta asymptotic notation for $\mathrm{T}(\mathrm{n})$:
Select correct option:
Set of functions described by: $\mathrm{c} 1 \mathrm{~g}(\mathrm{n})<=\mathrm{f}(\mathrm{n})$ for c 1 some constant and $\mathrm{n}=\mathrm{n} 0$
Set of functions described by $c 1 g(n)>=f(n)$ for $c 1$ some constant and $n=n 0$
Theta for $T(n)$ is actually upper and worst case complexity of the code
Set of functions described by: $\operatorname{c1g}(\mathrm{n})<=\mathrm{f}(\mathrm{n})<=\mathrm{c} 2 \mathrm{~g}(\mathrm{n})$ for c 1 and c 2 some constants and $\mathrm{n}=\mathrm{nO}$

CS502 - Fundamentals of Algorithms
 Quiz No. 4 Dated FEB 05, 2013

In in-place sorting algorithm is one that uses arrays for storage :
An additional array
No additional array (Right Answer)
Both of above may be true according to algorithm
More than 3 arrays of one dimension.

Muhammad Usama and DUA sister

The running time of quick sort depends heavily on the selection of:
No of inputs
Arrangement of elements in array
Size o elements
Pivot element (Right Answer)

In stable sorting algorithm
One array is used
In which duplicating elements are not handled.
More then one arrays are required.

Duplicating elements remain in same relative position after sorting. (Right Answer)

Which sorting algorithm is faster :
$\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
O(nlogn)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$ (Right Answer)
$\mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)$
In Quick sort algorithm, constants hidden in $\mathrm{T}(\mathrm{n} \lg \mathrm{n})$ are
Large
Medium
Not known
Small (Right Answer)

Quick sort is based on divide and conquer paradigm; we divide the problem on base of pivot element and:
There is explicit combine process as well to conquer the solutin. (Right Answer)
No work is needed to combine the sub-arrays, the array is already sorted
Merging the subarrays
None of above.

There is relationship between number of back edges and number of cycles in DFS Select correct option:
Both are equal.
Cycles are half of back edges.
Cycles are one fourth of back edges.
There is no relationship between back edges and number of cycle (Right Answer)

You have an adjacency list for G , what is the time complexity to compute Graph transpose $\mathrm{G}^{\wedge} \mathrm{T}$
Select correct option:

Muhammad Usama and DUA sister

(V+E) (Right Answer)

V.E

V
E

Dijkstra's algorithm :
Select correct option:
Has greedy approach to find all shortest paths
Has both greedy and Dynamic approach to find all shortest paths
Has greedy approach to compute single source shortest paths to all other vertices (page 154)
Has both greedy and dynamic approach to compute single source shortest paths to all other vertices.

What is the time complexity to extract a vertex from the priority queue in Prim's algorithm? Select correct option:

```
O (log E)
?(V)
?(V+E)
O (log V) (page #152)
```

Which is true statement in the following.
Kruskal algorithm is multiple source technique for finding MST.
Kruskal's algorithm is used to find minimum spanning tree of a graph, time complexity of this algorithm is $\mathrm{O}(\mathrm{EV})$
Both of above

```
=>Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best tree
edge) when the graph has relatively few edges.
```

Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best tree edge) when the graph has relatively few edges.

True (Right Answer)

False

What general property of the list indicates that the graph has an isolated vertex?
Select correct option:
There is Null pointer at the end of list.
The Isolated vertex is not handled in list. (not Sure)
Only one value is entered in the list.
There is at least one null list.

Muhammad Usama and DUA sister

Which statement is true?
Select correct option:
If a dynamic-programming problem satisfies the optimal-substructure property, then a locally optimal solution is globally optimal.
If a greedy choice property satisfies the optimal-substructure property, then a locally optimal solution is globally optimal.

Both of above Right Answer)

None of above

A dense undirected graph is:
Select correct option:
A graph in which $E=O\left(V^{\wedge} 2\right)$ (Right Answer)
A graph in which $\mathrm{E}=\mathrm{O}(\mathrm{V})$
A graph in which $\mathrm{E}=\mathrm{O}(\log \mathrm{V})$
All items above may be used to characterize a dense undirected graph

Which is true statement.
Select correct option:
Breadth first search is shortest path algorithm that works on un-weighted graphs (Right
Answer)
Depth first search is shortest path algorithm that works on un-weighted graphs.
Both of above are true.
None of above are true.

What algorithm technique is used in the implementation of Kruskal solution for the MST? Greedy Technique (page \#142)
Divide-and-Conquer Technique
Dynamic Programming Technique
The algorithm combines more than one of the above techniques

A digraph is strongly connected under what condition?
A digraph is strongly connected if for every pair of vertices $u, v e V, u$ can reach v.
A digraph is strongly connected if for every pair of vertices $u, v e v, u$ can reach v and vice
versa. (Page \#135)
A digraph is strongly connected if for at least one pair of vertex u, $v e V$, u can reach v and vice versa.
A digraph is strongly connected if at least one third pair of vertices u, $v e V, u$ can reach v and vice versa.

Muhammad Usama and DUA sister

The relationship between number of back edges and number of cycles in DFS is, Both are equal
Back edges are half of cycles
Back edges are one quarter of cycles
There is no relationship between no. of edges and cycles (p 131)

Question \# 2 of 10 (Start time: 10:35:36 PM) Total Marks: 1
Suppose that a graph $G=(V, E)$ is implemented using adjacency lists. What is the complexity of a breadth-first traversal of G?
Select correct option:
$\mathrm{O}(|\mathrm{V}| \wedge 2)$
$\mathrm{O}(|\mathrm{V}||\mathrm{E}|)$
$\mathrm{O}(|\mathrm{V}| \wedge 2|\mathrm{E}|)$
$\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ pg 116

Question \# 4 of 10 (Start time: 10:37:30 PM) Total Marks: 1
Forward edge is:
Select correct option:
(u, v) where u is a proper descendent of v in the tree.
(u, v) where v is a proper descendent of u in the tree. $\operatorname{Pg} 129$
(u, v) where v is a proper ancesstor of u in the tree.
(u, v) where u is a proper ancesstor of v in the tree.

Question \# 5 of 10 (Start time: 10:37:58 PM) Total Marks: 1
Using ASCII standard the string "abacdaacacwe" will be encoded with \qquad bits
Select correct option:
64
128
$96 \mathrm{pg} 101 \quad 12 * 8=96$
120

Question \# 7 of 10 (Start time: 10:38:40 PM) Total Marks: 1
If you find yourself in maze the better traversel approach will be :
Select correct option:
BFS
BFS and DFS both are valid (pg 119)
Level order

Muhammad Usama and DUA sister
 DFS

Question \# 8
In digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E}) ; \mathrm{G}$ has cycle if and only if
Select correct option:
The DFS forest has forward edge.
The DFS forest has back edge (pg 131)
The DFS forest has both back and forward edge
BFS forest has forward edge

Question \# 9
What is generally true of Adjacency List and Adjacency Matrix representations of graphs?
Select correct option:
Lists require less space than matrices but take longer to find the weight of an edge ($\mathrm{v} 1, \mathrm{v} 2$)
Lists require less space than matrices and they are faster to find the weight of an edge (v1, v2)
(pg 116)
Lists require more space than matrices and they take longer to find the weight of an edge (v1, v2)
Lists require more space than matrices but are faster to find the weight of an edge
(v1, v2)

Question \# 10
Back edge is:
Select correct option:
(u, v) where v is an ancestor of u in the tree. (Pg 128)
(u, v) where u is an ancesstor of v in the tree.
(u, v) where v is an predcessor of u in the tree.
None of above

My $3{ }^{\text {rd }}$ Quiz
$\underline{\underline{\text { http://cs-mcqs.blogspot.com/2012/06/data-structures-algorithms-multiple.html }}}$

FINALTERM EXAMINATION

Question No: 2

Muhammad Usama and DUA sister

Although it requires more complicated data structures, Prim's algorithm for a minimum spanning tree is better than Kruskal's when the graph has a large number of vertices.
\rightarrow True \rightarrow False

Question No: 3

If a problem is in NP, it must also be in P .
\rightarrow True \quad False \quad unknown

Question No: 5

If a graph has v vertices and e edges then to obtain a spanning tree we have to delete
$\downarrow \mathrm{v}$ edges. $>\mathrm{v}-\mathrm{e}+5$ edges $\downarrow \mathrm{v}+\mathrm{e}$ edges. \downarrow None of these

Question No: 6

Maximum number of vertices in a Directed Graph may be $\left|V^{2}\right|$
\rightarrow True \quad False

Question No: 7

The Huffman algorithm finds a (n) \qquad solution.
\rightarrow Optimal \quad Non-optimal $>$ Exponential $>$ Polynomial

Question No: 8

The Huffman algorithm finds an exponential solution

Question No: 9

The Huffman algorithm finds a polynomial solution \rightarrow True False
Question No: 10
The greedy part of the Huffman encoding algorithm is to first find two nodes with larger frequency. $>$ True $>$ False

Question No: 11

The codeword assigned to characters by the Huffman algorithm have the property that no codeword is the postfix of any other. \quad True $>$ False

Question No: 12

Huffman algorithm uses a greedy approach to generate a postfix code T that minimizes the expected length $B(T)$ of the encoded string. \rightarrow True \rightarrow False

Question No: 13

Shortest path problems can be solved efficiently by modeling the road map as a graph.
\rightarrow True \rightarrow False

Question No: 14

Dijkestra's single source shortest path algorithm works if all edges weights are non-negative and
there are negative cost cycles. - True \rightarrow False

Muhammad Usama and DUA sister

Question No: 15

Bellman-Ford allows negative weights edges and negative cost cycles True False

Question No: 16

The term "coloring" came form the original application which was in architectural design.

- True \rightarrow False

Question No: 17
In the clique cover problem, for two vertices to be in the same group, they must be adjacent to each other. \rightarrow True $>$ False

Question No: 18

Dijkstra's algorithm is operates by maintaining a subset of vertices True False

Question No: 19

The difference between Prim's algorithm and Dijkstra's algorithm is that Dijkstra's algorithm uses a different key. \rightarrow True $>$ False

Question No: 21
We do sorting to,
\rightarrow keep elements in random positions keep the algorithm run in linear order

- keep the algorithm run in $(\log n)$ order
- keep elements in increasing or decreasing order

Question No: 22

After partitioning array in Quick sort, pivot is placed in a position such that

- Values smaller than pivot are on left and larger than pivot are on right
- Values larger than pivot are on left and smaller than pivot are on right
- Pivot is the first element of array Pivot is the last element of array

Question No: 23
Merge sort is stable sort, but not an in-place algorithm

\rightarrow True (p\#54) $>$ False

Question No: 24
In counting sort, once we know the ranks, we simply \qquad numbers to their final positions in an output array.

Delete \quad copy (p\#57) $>$ Mark arrange

Question No: 25

Dynamic programming algorithms need to store the results of intermediate sub-
problems. Δ True p\#75) $>$ False

Question No: 26

A $\mathrm{p} \times \mathrm{q}$ matrix A can be multiplied with a $\mathrm{q} \times \mathrm{r}$ matrix B . The result will be a $\mathrm{p} \times \mathrm{r}$ matrix C .
There are ($\mathrm{p} . \mathrm{r}$) total entries in C and each takes \qquad to compute.

$$
\nabla \mathrm{O}(\mathbf{q})(\mathrm{p}=84) \quad \mathrm{O}(1)>\mathrm{O}\left(\mathrm{n}^{2}\right) \quad>\mathrm{O}\left(\mathrm{n}^{3}\right)
$$

Muhammad Usama and DUA sister
 FINALTERM EXAMINATION

Question No: 2

Which of the following is calculated with big o notation?
Lower bounds Upper bounds
Both upper and lower bound Medium bounds

Question No: 3

Merge sort makes two recursive calls. Which statement is true after these recursive calls
finish, but before the merge step?
The array elements form a heap
Elements in each half of the array are sorted amongst themselves
Elements in the first half of the array are less than or equal to elements in the second half of the array
None of the above

Question No: 4

Who invented Quick sort procedure?
Hoare Sedgewick Mellroy Coreman
Question No: 6
Consider the following Huffman Tree
The binary code for the string TEA is

1000010

01100010
1000110
1110110

Question No: 7
If a graph has v vertices and e edges then to obtain a spanning tree we have to delete v edges.
$v \quad e+5$ edges $v+e$ edges. None of these
Question No: 8
Can an adjacency matrix for a directed graph ever not be square in shape?
Yes
No

Question No: 9

One of the clever aspects of heaps is that they can be stored in arrays without using any Pointers (p \#40) constants variables functions

Question No: 10
Merge sort requires extra array storage, True p \#54) False
Mergesort is a stable algorithm but not an in-place algorithm. It requires extra array storage.
Question No: 11
Non-optimal or greedy algorithm for money change takes \qquad

Made by

Muhammad Usama and DUA sister

$0(k) \quad(p \# 99) \quad O(k N) \quad O(2 k) \quad O(N)$

Question No: 12

The Huffman codes provide a method of encoding data inefficiently when coded using
ASCII standard. True Falase (p\# 99
The Huffman codes provide a method of encoding data efficiently.

Question No: 13

Using ASCII standard the string abacdaacac will be encoded with \qquad bits.
80 (p\# 99 $160 \quad 320 \quad 100$
Consider the string " abacdaacac". if the string is coded with ASCII codes, the message length would be10 $\times 8=80$ bits .

Question No: 14
Using ASCII standard the string abacdaacac will be encoded with 160 bits.
True False (p\# 99)
Question No: 15
Using ASCII standard the string abacdaacac will be encoded with 320 bits.
True False (p\# 99)
Question No: 16
Using ASCII standard the string abacdaacac will be encoded with 100 bits.
True False (p\# 99)
Question No: 17
Using ASCII standard the string abacdaacac will be encoded with 32 bytes
True False (p\# 99)

Question No: 18

The greedy part of the Huffman encoding algorithm is to first find two nodes with smallest frequency.
True (p\# 100) False

Question No: 19

The greedy part of the Huffman encoding algorithm is to first find two nodes with character frequency
True False (p\# 100)
Question No: 20
Huffman algorithm uses a greedy approach to generate an antefix code T that minimizes the expected length $B(T)$ of the encoded string.

False (p\# 102)

Question No: 21
Depth first search is shortest path algorithm that works on un-weighted graphs.
True False (p\# 153)

Muhammad Usama and DUA sister

The breadth-first-search algorithm we discussed earlier is a shortest-path algorithm that works on un-weighted graphs

Question No: 22

Dijkestra s single source shortest path algorithm works if all edges weights are nonnegative and there are no negative cost cycles.
True (p\# 159) False
Question No: 23
Dijkestra s single source shortest path algorithm works if all edges weights are negative and there are no negative cost cycles.

False

Question No: 24

Floyd-Warshall algorithm is a dynamic programming algorithm; the genius of the algorithm is in the clever recursive formulation of the shortest path problem.
True (p\# 162) Flase
Question No: 25
Floyd-Warshall algorithm, as in the case with DP algorithms, we avoid recursive evaluation by generating a table for
k
ij d
True
Flase
the case with DP algorithms, we will avoid recursive evaluation by generating a table for $\mathbf{d}(\mathbf{k}) \mathbf{i j}$

Question No: 26

The term coloring came from the original application which was in map drawing. True (p\# 173) False

Question No: 27
In the clique cover problem, for two vertices to be in the same group, they must be \qquad each other.
Apart from Far from Near to Adjacent to (P\# 176)

Question No: 28

In the clique cover problem, for two vertices to be in the same group, they must be apart from each other.
True False (P\# 176)
Question No: 29
The difference between Prims algorithm and Dijkstra s algorithm is that Dijkstra s algorithm uses a different key.
True (P \# 156) not sure False

Muhammad Usama and DUA sister

Question No: 30

The difference between Prim s algorithm and Dijkstra s algorithm is that Dijkstra s algorithm uses a same key.
True False (P \# 156) not sure

Quiz no\# 4 06-07-2012 solved by umair sid 100%
What algorithm technique is used in the implementation of kruskal solution for the MST?
Greedy Technique page \#142
in drsigne $G=(V, E)$; G has cycle if and only if
The DFS forest has back edge page \# 131
Question \# 9 of 10
Cross edge is :
(u, v) where u and v are not ancestor of one another
(u, v) where u is ancesstor of v and v is not descendent of u.
(u, v) where u and v are not ancestor or descendent of one another pg 129
(u, v) where u and v are either ancestor or descendent of one another.
Forword edge is :
(u, v) where v ia a proper decendent of u in the tree.
Page \# 129
You have an adjective list for G , what is the time complexity to computer graph transpose $\mathrm{G}^{\wedge} \mathrm{T}$.?
($\mathrm{V}+\mathrm{E}$) \quad PAGE \# 138
Given an adjacency list for G, it is possible to compute G^{T} in $\Theta(V+E)$ time.

It takes $\mathrm{O}(\log \mathrm{V})$ to extract a vertex from the priority queue.
There is relationship between number of back edges and number of cycles in DFS
There is no relationship between back edges and number of cycles

Which is true statement:
Breadth first search is shortest path algorithm that works on un-weighted graphs
Depth first search is shortest path algorithm that works on un-weighted graphs.
Both of above are true.
Overall time for Kruskal is
$\Theta(E \log \mathrm{E})=\Theta(\mathrm{E} \log \mathrm{V})$ if the graph is sparse. $\mathbf{P}-\mathbf{1 4 9}$
True

Question No: 1

Muhammad Usama and DUA sister

An optimization problem is one in which you want to find,

- Not a solution
- An algorithm
- Good solution
- The best solution

Question No: 2
Although it requires more complicated data structures, Prim's algorithm for a minimum spanning tree is better than Kruskal's when the graph has a large number of vertices.

- True
- False

Question No: 3
If a problem is in NP, it must also be in P .

- True
- False
- unknown

Question No: 5
If a graph has v vertices and e edges then to obtain a spanning tree we have to delete

- vedges.
- $\mathrm{v}-\mathrm{e}+5$ edges
- $\mathrm{v}+\mathrm{e}$ edges.
- None of these

Question No: 6
Maximum number of vertices in a Directed Graph may be |V2|

- True
- False

Question No: 7
The Huffman algorithm finds a (n) \qquad solution.

- Optimal
- Non-optimal
- Exponential
- Polynomial

Question No: 8
The Huffman algorithm finds an exponential solution - True $>$ False
Question No: 9
The Huffman algorithm finds a polynomial solution \quad True $>$ False
Question No: 10
The greedy part of the Huffman encoding algorithm is to first find two nodes with larger
frequency. \rightarrow True $>$ False
Question No: 11
The codeword assigned to characters by the Huffman algorithm have the property that no codeword is the postfix of any other. \quad True $>$ False
Question No: 12
Huffman algorithm uses a greedy approach to generate a postfix code T that minimizes the expected length $\mathrm{B}(\mathrm{T})$ of the encoded string. \quad True $>$ False Question No: 13

Muhammad Usama and DUA sister

Shortest path problems can be solved efficiently by modeling the road map as a graph.

- True - False

Question No: 14
Dijkestra's single source shortest path algorithm works if all edges weights are nonnegative and there are negative cost cycles. True False
Question No: 15
Bellman-Ford allows negative weights edges and negative cost cycles.

- True - False

Bellman-Ford allows negative weights edges and no negative cost cycles.
Question No: 16
The term "coloring" came form the original application which was in architectural
design. \quad True $>$ False
The term "coloring" comes from the original application which
was in map drawing.
Question No: 17
In the clique cover problem, for two vertices to be in the same group, they must be adjacent to each other. True False
Question No: 18
Dijkstra's algorithm is operates by maintaining a subset of vertices \rightarrow True False
Question No: 19
The difference between Prim's algorithm and Dijkstra's algorithm is that Dijkstra's algorithm uses a different key. \quad True \quad False

Question No: 21
We do sorting to,

- keep elements in random positions
- keep the algorithm run in linear order
- keep the algorithm run in $(\log n)$ order
- keep elements in increasing or decreasing order
- Question No: 22

After partitioning array in Quick sort, pivot is placed in a position such that

- Values smaller than pivot are on left and larger than pivot are on right
- Values larger than pivot are on left and smaller than pivot are on right
- Pivot is the first element of array
- Pivot is the last element of array

Question No: 23
Merge sort is stable sort, but not an in-place algorithm - True False
Question No: 24
In counting sort, once we know the ranks, we simply \qquad numbers to their final positions in an output array.
\rightarrow Delete copy \rightarrow Mark \rightarrow arrange
Question No: 25
Dynamic programming algorithms need to store the results of intermediate sub-
problems. \quad True - False
Using ASCII standard the string abacdaacac will be encoded with \qquad bits. $80 \quad 160 \quad 320 \quad 100$

Using ASCII standard the string abacdaacac will be encoded with 160 bits.
True False

Made by

Muhammad Usama and DUA sister

Using ASCII standard the string abacdaacac will be encoded with 320 bits.
True False
Using ASCII standard the string abacdaacac will be encoded with 100 bits.
True False
The Huffman algorithm finds a (n) \qquad solution.
\rightarrow Optimal \downarrow Non-optimal \quad Exponential \quad Polynomial
Huffman algorithm uses a greedy approach to generate a postfix code T that minimizes the expected length $B(T)$ of the encoded string.

- True
- False

2: Which statement is true?

- If a dynamic-programming problem satisfies the optimal-substructure property, then a locally optimal solution is globally optimal.
- If a greedy choice property satisfies the optimal-substructure property, then a locally optimal solution is globally optimal.
- both of above
- none of above

5: What general property of the list indicates that the graph has an isolated vertex?

- There is Null pointer at the end of list.
- The Isolated vertex is not handled in list.
- Only one value is entered in the list.
- There is at least one null list.

6: Which is true statement.

- Breadth first search is shortest path algorithm that works on un-weighted graphs.
- Depth first search is shortest path algorithm that works on un-weighted graphs.
- Both of above are true.
- None of above are true.

11: Using ASCII standard the string "abacdaacacwe" will be encoded with \qquad bits

- 64
- 128
- $9612 * 8=96$
- 120

13: the analysis of selection algorithm shows the total running time is indeed-----------in
n.

- arithmetic

Made by

Muhammad Usama and DUA sister

- geometric
- linear
- orthogonal

14: back edge is
(1) In Prim's algorithm, the additional information maintained by the algorithm is the length of the shortest edge from vertex v to points already in the tree.
A) TRUE
B) FALSE
C) UNKNOWN
(2) Although it requires more complicated data structures, Prim's algorithm for a minimum spanning tree is better than Kruskal's when the graph has a large number of vertices.
A) TRUE.
B) FALSE
C: UNKNOWN
(3) If a problem is NP-complete, it must also be in NP.
A) TRUE.
B) FALSE
C) UNKNOWN
(4) Which statement is true
(I) The running time of Bellman-Ford algorithm is T (VE)
(II) Both Dijkstra's algorithm and Bellman-Ford are based on performing repeated relaxations
(III) The 0-1 knapsack problem is hard to solve

- Only I • Only III • Both I and III • All of these

5) Which of the following arrays represent descending (max) heaps?
I. [10,7,7,2,4,6] II. [10,7,6,2,4,7]
III. [10,6,7,2,4,6]
IV. [6,6,7,2,4,10]
-Only II • Only IV • Both II and IV • Both I and III
6. Which of the following statement(s) is/are correct?
(a) $\mathrm{O}(\mathrm{n} \log \mathrm{n}+\mathrm{n} 2)=\mathrm{O}(\mathrm{n} 2)$. (b) $\mathrm{O}(\mathrm{n} \log \mathrm{n}+\mathrm{n} 2)=\mathrm{O}(\mathrm{n} 2 \log 2 \mathrm{n})$
(c) $\mathrm{O}(\mathrm{c} \mathrm{n} 2)=\mathrm{O}(\mathrm{n} 2)$ where c is a constant.
(d) $\mathrm{O}(\mathrm{c} \mathrm{n} 2)=\mathrm{O}(\mathrm{c})$ where c is a constant.
(e) $\mathrm{O}(\mathrm{c})=\mathrm{O}(1)$ where c is a constant.

- Only (a) \& (e)
- Both (c) and (e)

7. Which of the shortest path algorithms would be most appropriate for finding paths in the graph with negative edge weights and cycles?
I.Dijkstra's Algorithm
II. Bellman-Ford Algorithm
III. Floyd Warshall Algorithm

- Only II • Only III • Both II \& III

9. Suppose we have two problems A and B.Problem A is polynomial-time reducible and problem B is NP-complete. If we reduce problem A into B then problem A becomes NPcomplete - Yes • No
10. The recurrence relation of Tower of Hanoi is given below
? $\mathbf{1}$ if $\mathbf{n}=\mathbf{1}$
T n =?
-133()
$2(\mathrm{Tn}-+1)$ lif $\mathrm{n}>1$

Muhammad Usama and DUA sister

In order to move a tower of 6 rings from one peg to another, how many moves are required?

- 15
- 7 • 63
- 32

12. Edge (u, v) is a forward edge if

- u is a proper descendant of v in the tree
- v is a proper descendant of u in the tree
- None of these

13. Is $22 \mathrm{n}=\mathrm{O}$?

2n-26? ?
14. If, in a DFS forest of digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{f}[\mathrm{u}]=\mathrm{f}[\mathrm{v}]$ for an edge (u, v) ? E then the edge is called

- Back edge - Forward edge • Cross Edge • Tree Edge • None of these

16. Best and worst case times of an algorithm may be same.

- True - False

17. Can an adjacency matrix for a directed graph ever not be square in shape?

- Yes • No

1. In which order we can sort?

- increasing order only - decreasing order only
- increasing order or decreasing order - both at the same time

2. heap is a left-complete binary tree that conforms to the \qquad - increasing order only • decreasing order only - heap order • (log n) order 3. In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,

- Tn)
- Tn / 2)
- $\log \mathrm{n}$
- $\mathrm{n} / 2+\mathrm{n} / 4$

4. How much time merge sort takes for an array of numbers?

- T($\left.\mathrm{n}^{\wedge} 2\right)$
- $\mathrm{T}(\mathrm{n})$
- $T(\log n)$
- $T(n \log n)$

5. One of the clever aspects of heaps is that they can be stored in arrays without using any

- pointers
- constants
- variables
- functions

6. the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \qquad series in the analysis

- linear
- arithmetic
- geometric
- exponent

7:. Sieve Technique applies to problems where we are interested in finding a single item from a larger set of \qquad

- items
- phases
- pointers
- constant

8. The sieve technique works in \qquad as follows

- phases
- numbers
- integers
- routines

9. For the heap sort, access to nodes involves simple \qquad operations.

- arithmetic
- binary
- algebraic - logarithmic

10. The analysis of Selection algorithm shows the total running time is indeed
\qquad in n ,

- arithmetic
- geometric
- linear
- orthogonal

11. Divide-and-conquer as breaking the problem into a small number of

- pivot
- Sieve
- smaller sub problems
- Selection

12. Slow sorting algorithms run in,
-T(n^2) •T(n) •T($\log \mathrm{n}) \quad$ •T(n $\log \mathrm{n})$
13. A heap is a left-complete binary tree that conforms to the

- increasing order only - decreasing order only - heap order • $(\log n)$ order

Made by

Muhammad Usama and DUA sister

14. For the heap sort we store the tree nodes in

- level-order traversal • in-order traversal - pre-order traversal - post-order traversal 15. The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,
- divide-and-conquer, • decrease and conquer
- greedy nature
- 2-dimension Maxima

16. We do sorting to, Select correct option:

- keep elements in random positions - keep the algorithm run in linear order
- keep the algorithm run in $(\log n)$ order • keep elements in increasing or decreasing order 17. Sorting is one of the few problems where provable \qquad bonds exits on how fa

we can sort, Select correct option:

- upper • lower • average • $\log n$

For the heap sort we store the tree nodes in Select correct option:

- level-order traversal - in-order traversal - pre-order traversal • post-order traversal

20: In Sieve Technique we do not know which item is of interest Select correct option:

- True - False

21: Slow sorting algorithms run in,
-T(n^2) •T(n) •T(logn) •T(n $\log \mathbf{n})$
22: Divide-and-conquer as breaking the problem into a small number of

- pivot - Sieve - smaller sub problems • Selection

23: For the sieve technique we solve the problem,

- recursively • mathematically • precisely • accurately

24: we do sorting to,

- keep elements in random positions - keep the algorithm run in linear order
- keep the algorithm run in $(\log n)$ order - keep elements in increasing or decreasing order

25: The reason for introducing Sieve Technique algorithm is that it illustrates a very
important special case of,

- divide-and-conquer - decrease and conquer • greedy nature • 2-dimension Maxima

26: In Sieve Technique we do not know which item is of interest

- true - false

27: In the analysis of
Selection algorithm, we make a number of passes, in fact it could be as many as,

- T(n)
- $\mathrm{T}(\mathrm{n} / 2)$
- $\log n$
- $\mathrm{n} / 2+\mathrm{n} / 4$

28: Divide-and-conquer as breaking the problem into a small number of

- pivot
- Sieve
- smaller sub problems
- Selection

29: A heap is a left-complete binary tree that conforms to the \qquad

- increasing order only - decreasing order only - heap order • $(\log \mathrm{n})$ order

30: Slow sorting algorithms run in,

- T(n^2) •T(n) •T(logn)

31: One of the clever aspects of heaps is that they can be stored in arrays without using
any \qquad -.

- pointers
- constants
- variables
- functions

32: Sorting is one of the few problems where provable \qquad bonds exits on how fast
we can sort,

- upper • lower • average
- $\log n$

33: For the sieve technique we solve the problem,

- mathematically
- precisely - accurately
- recursively

34: Sieve Technique can be applied to selection problem?

- True - False

37: Heaps can be stored in arrays without using any pointers; this is due to the
\qquad nature of the binary tree,

- left-complete
- right-complete
- tree nodes
- tree leaves

Made by

Muhammad Usama and DUA sister

38: How many elements do we eliminate in each time for the Analysis of Selection algorithm?

- $\mathrm{n} / 2$ elements
- (n / 2) + n elements
- $\mathrm{n} / 4$ elements
- 2 n elements

39: We do sorting to,

- keep elements in random positions - keep the algorithm run in linear order
- keep the algorithm run in $(\log n)$ order - keep elements in increasing or decreasing order 40: In which order we can sort?
- increasing order only - decreasing order only
- increasing order or decreasing order - both at the same time

41: : In the analysis of Selection algorithm, we make a number of passes, in fact it could
be as many as, - T(n)

- T(n / 2)
- $\log \mathrm{n}$
- $\mathrm{n} / 2+\mathrm{n} / 4$

42: The sieve technique is a special case, where the number of sub problems is just

- 5
- Many
- 1
- few
Question No: 1 no need

Random access machine or RAM is a/an

- Machine build by Al-Khwarizmi
- Mechanical machine
- Electronics machine
- Mathematical model

Question No: 2

is a graphical representation of an algorithm

- Σ notation
- Enotation
- Flowchart
- Asymptotic notation

Question No: 3
A RAM is an idealized machine with \qquad random-access memory.

- 256 MB
- 512 MB
- an infinitely large
- 100GB

Question No: 4
What type of instructions Random Access Machine (RAM) can execute? Choose best answer

- Algebraic and logic
- Geometric and arithmetic
- Arithmetic and logic
- Parallel and recursive

Question No: 5
What will be the total number of max comparisons if we run brute-force maxima
algorithm with n elements?
$-\mathrm{n}^{2}$

- $2 \mathrm{n} / \mathrm{n}$
- n
- 8 n

Question No: 6
What is the solution to the recurrence $T(n)=T(n / 2)+n$.

Made by

Muhammad Usama and DUA sister

- O(logn)
- $\mathrm{O}(\mathrm{n})$
- O(nlogn)
- $\mathrm{O}(\mathrm{n} 2)$

Question No: 7
Consider the following code:
For $(\mathrm{j}=1 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++$)
For (k=1; k<15;k++)
For(l=5; $1<\mathrm{n} ; 1++$)
\{
Do_something_constant();
\}
What is the order of execution for this code.
$-\mathrm{O}(\mathrm{n})$

- $\mathrm{O}(\mathrm{n} 3)$
- $\mathrm{O}(\mathrm{n} 2 \log \mathrm{n})$
- $\mathrm{O}(\mathrm{n} 2)$

Question No: 8
Consider the following Algorithm:
Factorial (n)\{
if $(\mathrm{n}=1)$
return 1
else
return (n * Factorial(n-1))
\{
Recurrence for the following algorithm is:

- $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+1$
- $\mathrm{T}(\mathrm{n})=\mathrm{nT}(\mathrm{n}-1)+1$
- $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+\mathrm{n}$
- $T(n)=T(n(n-1))+1$

Question No: 9
What is the total time to heapify?

- O(log n)
- $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
- $\mathrm{O}(\mathrm{n} 2 \log \mathrm{n})$
- $\mathrm{O}(\log 2 \mathrm{n})$

Question No: 10
When we call heapify then at each level the comparison performed takes time

- It will take Θ (1)
- Time will vary according to the nature of input data
- It can not be predicted
- It will take $\Theta(\log n)$

Muhammad Usama and DUA sister

CS502 - Fundamentals of Algorithms Quiz No. 5 Dated FEB $15{ }^{\text {TH }} 2013$

In in-place sorting algorithm is one that uses arrays for storage :
An additional array
No additional array (Right Answer)
Both of above may be true according to algorithm
More than 3 arrays of one dimension.

The running time of quick sort depends heavily on the selection of
No of inputs
Arrangement of elements in array
Size o elements
Pivot element (Right Answer)
In stable sorting algorithm
One array is used
In which duplicating elements are not handled.
More then one arrays are required.

Duplicating elements remain in same relative position after sorting. (Right Answer)

Which sorting algorithn is faster :
$\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
O(nlogn)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$ (Right Answer)
$\mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)$
In Quick sort algorithm, constants hidden in $\mathrm{T}(\mathrm{n} \lg \mathrm{n})$ are

Large
Medium
Not known
Small (Right Answer)

Quick sort is based on divide and conquer paradigm; we divide the problem on base of pivot element and:

There is explicit combine process as well to conquer the solutin. (Right Answer)

No work is needed to combine the sub-arrays, the array is already sorted
Merging the subarrays

Muhammad Usama and DUA sister

None of above.

There is relationship between number of back edges and number of cycles in DFS Select correct option:
Both are equal.
Cycles are half of back edges.
Cycles are one fourth of back edges.
There is no relationship between back edges and number of cycle (Right Answer)

You have an adjacency list for G, what is the time complexity to compute Graph transpose $\mathrm{G}^{\wedge} \mathrm{T}$?
Select correct option:
(V+E) (Right Answer)
V.E

V
E

Question \# 3 of 10 (Start time: 06:54:27 PM) Total Marks: 1
You have an adjacency list for G, what is the time complexity to compute Graph transpose G^T.?

```
?(V + E) Right Answer)
?(V E)
?(V)
?(V^2)
```

What is the time complexity to extract a vertex from the priority queue in Prim's algorithm?
Select correct option:
log (V) (Right Answer)
V.V
E.E
$\log (E)$
Dijkstra's algorithm :
Select correct option:
Has greedy approach to find all shortest paths
Has both greedy and Dynamic approach to find all shortest paths
Has greedy approach to compute single source shortest paths to all other vertices (Right
Answer)
Has both greedy and dynamic approach to compute single source shortest paths to all other vertices.

Muhammad Usama and DUA sister

What algorithm technique is used in the implementation of Kruskal solution for the MST?
Greedy Technique (Right Answer)
Divide-and-Conquer Technique
Dynamic Programming Technique
The algorithm combines more than one of the above techniques
What is the time complexity to extract a vertex from the priority queue in Prim's algorithm?
Select correct option:
O ($\log \mathrm{E})$
? (V)
? (V+E)
O ($\log \mathrm{V}$) (Right Answer)
Which is true statement in the following.
Kruskal algorithm is multiple source technique for finding MST.
Kruskal's algorithm is used to find minimum spanning tree of a graph, time complexity of this algorithm is $\mathrm{O}(\mathrm{EV})$
Both of above
Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best Tree edge) when the graph has relatively few edges) (Right Answer)

The relationship between number of back edges and number of cycles in DFS is, Both are equal
Back edges are half of cycles
Back edges are one quarter of cycles
There is no relationship between no. of edges and cycles (Right Answer)
Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best tree edge) when the graph has relatively few edges.
True (Right Answer)
False

What is the time complexity to extract a vertex from the priority queue in Prim's algorithm?
Select correct option:
$\log (V)$
V.V
E.E

Made by

Muhammad Usama and DUA sister

$\log (E)$

Suppose that a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is implemented using adjacency lists. What is the complexity of a breadth-first traversal of G ?
Select correct option:
O(|V |^2)
O(|V | |E|) (Right Answer)
O(|V|^2|E|)
$O(|V|+|E|)$

What is generally true of Adjacency List and Adjacency Matrix representations of graphs?
Select correct option:
Lists require less space than matrices but take longer to find the weight of an edge (v1,v2)
Lists require less space than matrices and they are faster to find the weight of an edge (v1,
v2) Right Answer)
Lists require more space than matrices and they take longer to find the weight of an edge (v1, v2)
Lists require more space than matrices but are faster to find the weight of an edge (v1, v2)

What general property of the list indicates that the graph has an isolated vertex?
Select correct option:
There is Null pointer at the end of list.
The Isolated vertex is not handled in list. (not Sure)
Only one value is entered in the list.
There is at least one null list.

A dense undirected graph is:
Select correct option:

A graph in which $\mathrm{E}=\mathrm{O}\left(\mathrm{V}^{\wedge} 2\right)$ (Right Answer)

A graph in which $\mathrm{E}=\mathrm{O}(\mathrm{V})$
A graph in which $\mathrm{E}=\mathrm{O}(\log \mathrm{V})$
All items above may be used to characterize a dense undirected graph

In digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$; G has cycle if and only if
Select correct option:
The DFS forest has forward edge.
The DFS forest has back edge (Right Answer)
The DFS forest has both back and forward edge
BFS forest has forward edge

Made by

Muhammad Usama and DUA sister

Back edge is:
Select correct option:
(u, v) where v is an ancestor of u in the tree. (Right Answer)
(u, v) where u is an ancesstor of v in the tree.
(u, v) where v is an predcessor of u in the tree.
None of above
Using ASCII standard the string "abacdaacacwe" will be encoded with \qquad bits
Select correct option:
64
128 (Right Answer)
96
120

Cross edge is :
Select correct option:
(u, v) where u and v are not ancestor of one another
(u, v) where u is ancesstor of v and v is not descendent of u.
(u, v) where u and v are not ancestor or descendent of one another (Right Answer)
(u, v) where u and v are either ancestor or descendent of one another.

Which statement is true?
Select correct option:
If a dynamic-programming problem satisfies the optimal-substructure property, then a locally optimal solution is globally optimal.
If a greedy choice property satisfies the optimal-substructure property, then a locally optimal solution is globally optimal.

Both of above Right Answer)

None of above
10 If you find yourself in maze the better traversel approach will bE

A dense undirected graph is:
Select correct option:
A graph in which $E=O\left(V^{\wedge} 2\right)$ (Right Answer)
A graph in which $\mathrm{E}=\mathrm{O}(\mathrm{V})$
A graph in which $\mathrm{E}=\mathrm{O}(\log \mathrm{V})$
All items above may be used to characterize a dense undirected graph
Which is true statement.
Select correct option:
Breadth first search is shortest path algorithm that works on un-weighted graphs (Right

Answer)

Depth first search is shortest path algorithm that works on un-weighted graphs.

Muhammad Usama and DUA sister

Both of above are true.
None of above are true.

Forward edge is:
Select correct option:
(u, v) where u is a proper descendent of v in the tree.
(u, v) where v is a proper descendent of u in the tree. (Right Answer)
(u, v) where v is a proper ancesstor of u in the tree.
(u, v) where u is a proper ancesstor of v in the tree.
Back edge is:
Select correct option:
(u, v) where v is an ancestor of u in the tree. (Right Answer)
(u, v) where u is an ancesstor of v in the tree.
(u, v) where v is an predcessor of u in the tree.
None of above

Suppose that a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is implemented using adjacency lists. What is the complexity of a breadth-first traversal of G ?
Select correct option:
O(|V|^2)
O(|V ||E|) (Right Answer)
O(|V|^2|E|)
O(|V|+|E|)

In digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$; G has cycle if and only if
Select correct option:
The DFS forest has forward edge.
The DFS forest has back edge (Right Answer)
The DFS forest has both back and forward edge
BFS forest has forward edge
What general property of the list indicates that the graph has an isolated vertex?
Select correct option:
There is Null pointer at the end of list.
The Isolated vertex is not handled in list. (not Sure)
Only one value is entered in the list.
There is at least one null list.

If you find yourself in maze the better traversel approach will be :
BFS
BFS and DFS both are valid (Right Answer)
Level order

Made by

Muhammad Usama and DUA sister

DFS

Cross edge is :
(u, v) where u and v are not ancestor of one another
(u, v) where u is ancesstor of v and v is not descendent of u.
(u, v) where u and v are not ancestor or descendent of one another (Right Answer)
(u, v) where u and v are either ancestor or descendent of one another.
What algorithm technique is used in the implementation of Kruskal solution for the MST?

Greedy Technique (Right Answer)

Divide-and-Conquer Technique
Dynamic Programming Technique
The algorithm combines more than one of the above techniques
Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best tree edge) when the graph has relatively few
True (Right Answer)
False

You have an adjacency list for G, what is the time complexity to compute Graph transpose
G^{\wedge} T.?
? (V + E) Right Answer)
? (VE)
? (V)
? (V^2)

A digraph is strongly connected under what condition?
A digraph is strongly connected if for every pair of vertices $u, v e V, u$ can reach v.
A digraph is strongly connected if for every pair of vertices $u, v e V, u$ can reach v and vice
versa. (Right Answer)
A digraph is strongly connected if for at least one pair of vertex u, $v e V$, u can reach v and vice versa.
A digraph is strongly connected if at least one third pair of vertices $u, v e V, u$ can reach v and vice versa.

The relationship between number of back edges and number of cycles in DFS is, Both are equal
Back edges are half of cycles
Back edges are one quarter of cycles
There is no relationship between no. of edges and cycles (Right Answer)
What algorithm technique is used in the implementation of Kruskal solution for the MST?

Greedy Technique (Right Answer)

Divide-and-Conquer Technique

Muhammad Usama and DUA sister

Dynamic Programming Technique
The algorithm combines more than one of the above techniques

In in-place sorting algorithm is one that uses arrays for storage :
An additional array
No additional array (Right Answer)
Both of above may be true according to algorithm
More than 3 arrays of one dimension.
The running time of quick sort depends heavily on the selection of
No of inputs
Arrangement of elements in array
Size o elements
Pivot element (Right Answer)
In stable sorting algorithm
One array is used
In which duplicating elements are not handled.
More then one arrays are required.
Duplicating elements remain in same relative position after sorting. (Right Answer)
Which sorting algorithn is faster :
$\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
O(nlogn)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$ (Right Answer)
O($n^{\wedge} 3$)
In Quick sort algorithm, constants hidden in $\mathrm{T}(\mathrm{n} \lg \mathrm{n})$ are

Large
Medium
Not known
Small (Right Answer)

Quick sort is based on divide and conquer paradigm; we divide the problem on base of pivot element and:

There is explicit combine process as well to conquer the solutin. (Right Answer)

No work is needed to combine the sub-arrays, the array is already sorted
Merging the subarrays
None of above.

Muhammad Usama and DUA sister

There is relationship between number of back edges and number of cycles in DFS Select correct option:

Both are equal.

Cycles are half of back edges.
Cycles are one fourth of back edges.

```
There is no relationship between back edges and number of cycle (Right Answer)
```

You have an adjacency list for G, what is the time complexity to compute Graph transpose $\mathrm{G}^{\wedge} \mathrm{T}$?
Select correct option:
(V+E) (Right Answer)
V.E

V
E

Question \# 3 of 10 (Start time: 06:54:27 PM) Total Marks: 1
You have an adjacency list for G , what is the time complexity to compute Graph transpose G^T.?

```
?(V + E) Right Answer)
?(V E)
?(V)
?(V^2)
```

What is the time complexity to extract a vertex from the priority queue in Prim's algorithm?
Select correct option:
\log (V) (Right Answer)
V.V
E.E
$\log (E)$
Dijkstra's algorithm :
Select correct option:
Has greedy approach to find all shortest paths
Has both greedy and Dynamic approach to find all shortest paths
Has greedy approach to compute single source shortest paths to all other vertices (Right
Answer)
Has both greedy and dynamic approach to compute single source shortest paths to all other vertices.

Made by

Muhammad Usama and DUA sister

What algorithm technique is used in the implementation of Kruskal solution for the MST?
Greedy Technique (Right Answer)
Divide-and-Conquer Technique
Dynamic Programming Technique
The algorithm combines more than one of the above techniques
What is the time complexity to extract a vertex from the priority queue in Prim's algorithm?
Select correct option:
O ($\log \mathrm{E}$)
? (V)
? (V+E)
O ($\log \mathrm{V}$) (Right Answer)

Which is true statement in the following.
Kruskal algorithm is multiple source technique for finding MST.
Kruskal's algorithm is used to find minimum spanning tree of a graph, time complexity of this algorithm is $\mathrm{O}(\mathrm{EV})$
Both of above

Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best Tree edge) when the graph has relatively few edges) (Right Answer)

The relationship between number of back edges and number of cycles in DFS is, Both are equal
Back edges are half of cycles
Back edges are one quarter of cycles
There is no relationship between no. of edges and cycles (Right Answer)

Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best tree edge) when the graph has relatively few edges.
True (Right Answer)
False

What is the time complexity to extract a vertex from the priority queue in Prim's algorithm?
Select correct option:
$\log (\mathrm{V})$
V.V
E.E
$\log (E)$

Muhammad Usama and DUA sister

Suppose that a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is implemented using adjacency lists. What is the complexity of a breadth-first traversal of G ?
Select correct option:
O(|V |^2)
O(|V | |E|) (Right Answer)
O(|V|^2|E|)
O(|V | + |E|)

What is generally true of Adjacency List and Adjacency Matrix representations of graphs? Select correct option:
Lists require less space than matrices but take longer to find the weight of an edge (v1,v2)
Lists require less space than matrices and they are faster to find the weight of an edge (v1,
v2) Right Answer)
Lists require more space than matrices and they take longer to find the weight of an edge (v1, v2)
Lists require more space than matrices but are faster to find the weight of an edge (v1, v2)

What general property of the list indicates that the graph has an isolated vertex?
Select correct option:
There is Null pointer at the end of list.
The Isolated vertex is not handled in list. (not Sure)
Only one value is entered in the list.
There is at least one null list.

A dense undirected graph is:
Select correct option:
A graph in which $\mathrm{E}=\mathrm{O}\left(\mathrm{V}^{\wedge} 2\right)$ (Right Answer)
A graph in which $\mathrm{E}=\mathrm{O}(\mathrm{V})$
A graph in which $\mathrm{E}=\mathrm{O}(\log \mathrm{V})$
All items above may be used to characterize a dense undirected graph

In digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$; G has cycle if and only if
Select correct option:
The DFS forest has forward edge.
The DFS forest has back edge (Right Answer)
The DFS forest has both back and forward edge
BFS forest has forward edge

Back edge is:
Select correct option:

(u, v) where v is ancestor of u in the tree. (Right Answer)

Made by

Muhammad Usama and DUA sister

(u, v) where u is an ancesstor of v in the tree.
(u, v) where v is an predcessor of u in the tree.
None of above

Using ASCII standard the string "abacdaacacwe" will be encoded with \qquad bits
Select correct option:
64
128 (Right Answer)
96
120

Cross edge is :
Select correct option:
(u, v) where u and v are not ancestor of one another
(u, v) where u is ancesstor of v and v is not descendent of u.
(u, v) where u and v are not ancestor or descendent of one another (Right Answer)
(u, v) where u and v are either ancestor or descendent of one another.

Which statement is true?
Select correct option:
If a dynamic-programming problem satisfies the optimal-substructure property, then a locally optimal solution is globally optimal.
If a greedy choice property satisfies the optimal-substructure property, then a locally optimal solution is globally optimal.

Both of above Right Answer)

None of above
10 If you find yourself in maze the better traversel approach will bE

A dense undirected graph is:
Select correct option:
A graph in which $E=O\left(V^{\wedge} 2\right)$ (Right Answer)
A graph in which $\mathrm{E}=\mathrm{O}(\mathrm{V})$
A graph in which $\mathrm{E}=\mathrm{O}(\log \mathrm{V})$
All items above may be used to characterize a dense undirected graph
Which is true statement.
Select correct option:
Breadth first search is shortest path algorithm that works on un-weighted graphs (Right
Answer)
Depth first search is shortest path algorithm that works on un-weighted graphs.
Both of above are true.
None of above are true.

Muhammad Usama and DUA sister

Forward edge is:
Select correct option:
(u, v) where u is a proper descendent of v in the tree.
(u, v) where v is a proper descendent of u in the tree. (Right Answer)
(u, v) where v is a proper ancesstor of u in the tree.
(u, v) where u is a proper ancesstor of v in the tree.

Back edge is:
Select correct option:
(u, v) where v is ancestor of u in the tree. (Right Answer)
(u, v) where u is an ancesstor of v in the tree.
(u, v) where v is an predcessor of u in the tree.
None of above

Suppose that a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is implemented using adjacency lists. What is the complexity of a breadth-first traversal of G ?
Select correct option:
O(|V|^2)
O(|V | |E|) (Right Answer)
O(|V|^2|E|)
$O(|V|+|E|)$
In digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$; G has cycle if and only if
Select correct option:
The DFS forest has forward edge.

The DFS forest has back edge (Right Answer)

The DFS forest has both back and forward edge
BFS forest has forward edge

What general property of the list indicates that the graph has an isolated vertex?
Select correct option:
There is Null pointer at the end of list.
The Isolated vertex is not handled in list. (not Sure)
Only one value is entered in the list.
There is at least one null list.

If you find yourself in maze the better traversel approach will be :
BFS
BFS and DFS both are valid (Right Answer)
Level order
DFS

Made by

Muhammad Usama and DUA sister

Cross edge is :
(u, v) where u and v are not ancestor of one another
(u, v) where u is ancesstor of v and v is not descendent of u.
(u, v) where u and v are not ancestor or descendent of one another (Right Answer)
(u, v) where u and v are either ancestor or descendent of one another.

What algorithm technique is used in the implementation of Kruskal solution for the MST?

Greedy Technique (Right Answer)

Divide-and-Conquer Technique
Dynamic Programming Technique
The algorithm combines more than one of the above techniques

Kruskal's algorithm (choose best non-cycle edge) is better than Prim's (choose best tree edge) when the graph has relatively few

True (Right Answer)

False

You have an adjacency list for G , what is the time complexity to compute Graph transpose $\mathrm{G}^{\wedge} \mathrm{T}$?
? (V + E) Right Answer)
? (VE)
? (V)
? (V^2)
A digraph is strongly connected under what condition?
A digraph is strongly connected if for every pair of vertices $u, v e V, u$ can reach v.
A digraph is strongly connected if for every pair of vertices $u, v e V, u$ can reach v and vice
versa. (Right Answer)
A digraph is strongly connected if for at least one pair of vertex u, $v e V$, u can reach v and vice versa.
A digraph is strongly connected if at least one third pair of vertices $u, v e V, u$ can reach v and vice versa.

The relationship between number of back edges and number of cycles in DFS is, Both are equal
Back edges are half of cycles
Back edges are one quarter of cycles

There is no relationship between no. of edges and cycles (Right Answer)

What algorithm technique is used in the implementation of Kruskal solution for the MST?

Greedy Technique (Right Answer)

Divide-and-Conquer Technique
Dynamic Programming Technique
The algorithm combines more than one of the above techniques

Made by

Muhammad Usama and DUA sister

Which may be stable sort:
Select correct option:
Bubble sort
Insertion sort
Both of above
Selection sort
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \qquad series in the analysis,
Select correct option:
linear
arithmetic
geometric
exponent

In Quick sort algorithm, constants hidden in $\mathrm{T}(\mathrm{n} \lg \mathrm{n})$ are Select correct option:

Large
Medium
Not known
small

How much time merge sort takes for an array of numbers?
Select correct option:
$T\left(n^{\wedge} 2\right)$
$T(n)$
$T(\log n)$
$T(n \log n)$

Counting sort has time complexity:
Select correct option:

O(n)

$\mathrm{O}(\mathrm{n}+\mathrm{k})$
O(k)
O(nlogn)

In which order we can sort?
Select correct option:

Muhammad Usama and DUA sister

```
increasing order only
decreasing order only
increasing order or decreasing order
both at the same time
```

A (an) \qquad is a left-complete binary tree that conforms to the heap order Select correct option:

heap

binary tree
binary search tree
array

The analysis of Selection algorithm shows the total running time is indeed \qquad in n , Select correct option:
arithmetic
geometric
linear
orthogonal

Quick sort is based on divide and conquer paradigm; we divide the problem on base of pivot element and:
Select correct option:

There is explicit combine process as well to conquer the solution.
No work is needed to combine the sub-arrays, the array is already sorted
Merging the sub arrays
None of above.

Sorting is one of the few problems where provable \qquad bonds exits on how fast we can sort,
Select correct option:
upper
lower
average
$\log n$

Muhammad Usama and DUA sister

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
$T(n)$
$T(n / 2)$
$\log n$
$n / 2+n / 4$
Quick sort is based on divide and conquer paradigm; we divide the problem on base of pivot element and:
There is explicit combine process as w ell to conquer
No w ork is needed to combine the sub-arrays, the a
Merging the subarrays

None of above

The number of nodes in a complete binary tree of height h is
$\mathbf{2}^{\wedge}(\mathrm{h}+1)$ - 1
2 * $(\mathrm{h}+1)-1$
2 * $(h+1)$
$\left((h+1)^{\wedge} 2\right)-1$
How many elements do we eliminate in each time for the Analysis of Selection algorithm?
$\mathrm{n} / 2$ elements
($\mathrm{n} / 2$) +n elements
$\mathrm{n} / 4$ elements
2 n elements

Which sorting algorithn is faster :
$\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
O(nlogn)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
$\mathrm{O}\left(\mathrm{n}^{\wedge}\right)$

We do sorting to,
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

Slow sorting algorithms run in,
$T\left(n^{\wedge} 2\right)$
T(n)
$T(\log n)$

Made by

Muhammad Usama and DUA sister

$\mathrm{T}(\mathrm{n} \log \mathrm{n})$

One of the clever aspects of heaps is that they can be stored in arrays without using any

Pointers

Constants
Variables
Functions

Counting sort is suitable to sort the elements in range 1 to k :
K is large
K is small
K may be large or small
None

We do sorting to, Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

Question \# 2 of 10 (Start time: 06:19:38 PM) Total Marks: 1
Heaps can be stored in arrays without using any pointers; this is due to the \qquad nature of the binary tree,
Select correct option:

left-complete

right-complete
tree nodes
tree leaves

Question \# 3 of 10 (Start time: 06:20:18 PM) Total Marks: 1
Sieve Technique can be applied to selection problem?
Select correct option:

True

False

Question \# 4 of 10 (Start time: 06:21:10 PM) Total Marks: 1
A heap is a left-complete binary tree that conforms to the \qquad
Select correct option:

Muhammad Usama and DUA sister

increasing order only
decreasing order only
heap order
($\log \mathrm{n}$) order

Question \# 5 of 10 (Start time: 06:21:39 PM) Total Marks: 1
A (an) \qquad is a left-complete binary tree that conforms to the heap order Select correct option:

heap

binary tree
binary search tree
array
Question \# 6 of 10 (Start time: 06:22:04 PM) Total Marks: 1
Divide-and-conquer as breaking the problem into a small number of Select correct option:
pivot
Sieve
smaller sub problems
Selection

Question \# 7 of 10 (Start time: 06:22:40 PM) Total Marks: 1
In Sieve Technique we do not know which item is of interest
Select correct option:

True

False

Question \# 8 of 10 (Start time: 06:23:26 PM) Total Marks: 1
The recurrence relation of Tower of Hanoi is given below $T(n)=\{1$ if $n=1$ and $2 T(n-1)$ if $n>1 \mathrm{ln}$ order to move a tower of 5 rings from one peg to another, how many ring moves are required? Select correct option:

16
10
32
31

Question \# 9 of 10 (Start time: 06:24:44 PM) Total Marks: 1
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \qquad series in the analysis,
Select correct option:

Muhammad Usama and DUA sister

linear
arithmetic
geometric
exponent

Question \# 10 of 10 (Start time: 06:25:43 PM) Total Marks: 1
For the heap sort, access to nodes involves simple \qquad operations.
Select correct option:
arithmetic
binary
algebraic
logarithmic

For the sieve technique we solve the problem,
Select correct option:
recursively
mathematically
precisely
accurately
The sieve technique works in \qquad as follows
Select correct option:
phases
numbers
integers
routines
Slow sorting algorithms run in,
Select correct option:
$T\left(n^{\wedge}\right)$
T(n)
$T(\log n)$
A (an) \qquad is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \qquad series in the analysis,
Select correct option:
linear
arithmetic

Made by

Muhammad Usama and DUA sister

geometric
exponent

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
Select correct option:
T(n)
$T(n / 2)$
$\log n$
n/2+n/4

The sieve technique is a special case, where the number of sub problems is just Select correct option:
5
many
1
few

In which order we can sort?
Select correct option:
increasing order only
decreasing order only
increasing order or decreasing order
both at the same time

The recurrence relation of Tower of Hanoi is given below $T(n)=\{1$ if $n=1$ and $2 T(n-1)$ if $n>1$ In order to move a tower of 5 rings from one peg to another, how many ring moves are required? Select correct option:
16
10
32
31

Analysis of Selection algorithm ends up with,
Select correct option:
T(n)
$\mathrm{T}(1 / 1+\mathrm{n})$
$\mathrm{T}(\mathrm{n} / 2)$
$T($ ($/ 2$) $+n)$

We do sorting to, Select correct option:

Muhammad Usama and DUA sister

keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

Divide-and-conquer as breaking the problem into a small number of Select correct option:
pivot
Sieve
smaller sub problems
Selection

The analysis of Selection algorithm shows the total running time is indeed \qquad in n , Select correct option:
arithmetic
geometric
linear
orthogonal

How many elements do we eliminate in each time for the Analysis of Selection algorithm? Select correct option:

n / 2 elements

($n / 2$) $+n$ elements
$\mathrm{n} / 4$ elements
2 n elements

Sieve Technique can be applied to selection problem?
Select correct option:

True
false

For the heap sort we store the tree nodes in Select correct option:

Made by

Muhammad Usama and DUA sister

level-order traversal
in-order traversal
pre-order traversal
post-order traversal

One of the clever aspects of heaps is that they can be stored in arrays without using any

Select correct option:
pointers
constants
variables
functions

A (an) \qquad is a left-complete binary tree that conforms to the heap order
Select correct option:
heap
binary tree
binary search tree
array
Divide-and-conquer as breaking the problem into a small number of
Select correct option:
pivot
Sieve
smaller sub problems
Selection

Heaps can be stored in arrays without using any pointers; this is due to the \qquad nature of the binary tree,
Select correct option:

left-complete

right-complete
tree nodes
tree leaves

For the sieve technique we solve the problem,
Select correct option:
recursively
mathematically
precisely
accurately

Made by

Muhammad Usama and DUA sister

A heap is a left-complete binary tree that conforms to the \qquad
Select correct option:
increasing order only
decreasing order only
heap order
($\log n$) order

We do sorting to,
Select correct option:
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

How many elements do we eliminate in each time for the Analysis of Selection algorithm?
Select correct option:

$\mathrm{n} / 2$ elements

($\mathrm{n} / 2$) +n elements
$\mathrm{n} / 4$ elements
2 n elements

How much time merge sort takes for an array of numbers?
Select correct option:
$T\left(n^{\wedge} 2\right)$
T(n)
$T(\log n)$
$T(n \log n)$

The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,
Select correct option:
divide-and-conquer
decrease and conquer
greedy nature
2-dimension Maxima

Question \# 1 of 10 (Start time: 08:17:23 AM) Total M a r k s: 1
The number of nodes in a complete binary tree of height h is
Select correct option:
$\mathbf{2}^{\wedge}(\mathrm{h}+1)$ - 1

Made by

Muhammad Usama and DUA sister

2 * $(\mathrm{h}+1)-1$
2 * $(h+1)$
$\left((h+1)^{\wedge} 2\right)-1$
Question \# 2 of 10 (Start time: 08:18:46 AM) Total M a r k s: 1
A (an) \qquad is a left-complete binary tree that conforms to the heap order
Select correct option:

heap

binary tree
binary search tree
array

Question \# 3 of 10 (Start time: 08:19:38 AM) Total M a r k s: 1
In Sieve Technique we do not know which item is of interest
Select correct option:
True
False

Question \# 4 of 10 (Start time: 08:20:33 AM) Total M a r k s: 1
Heaps can be stored in arrays without using any pointers; this is due to the
\qquad nature of the binary tree,
Select correct option:

left-complete

right-complete
tree nodes
tree leaves

Question \# 5 of 10 (Start time: 08:21:59 AM) Total M a r k s: 1
In the analysis of Selection algorithm, we make a number of passes, in fact it could be as
many as,
Select correct option:
T(n)
$T(n / 2)$
$\log n$
$\mathrm{n} / 2+\mathrm{n} / 4$

Question \# 6 of 10 (Start time: 08:23:01 AM) Total M a r k s: 1
For the sieve technique we solve the problem,
Select correct option:

recursively

mathematically
precisely
accurately
Theta asymptotic notation for $\mathrm{T}(\mathrm{n})$:
Select correct option:

Made by

Muhammad Usama and DUA sister

Set of functions described by: c1g(n)Set of functions described by c1g(n)>=f(n) for c1 s
Theta for $\mathrm{T}(\mathrm{n})$ is actually upper and worst case comp
Set of functions described by:
c1g(n)

Question \# 8 of 10 (Start time: 08:24:39 AM) Total M a r k s: 1
The sieve technique is a special case, where the number of sub problems is just Select correct option:
5
many
1
few
Question \# 9 of 10 (Start time: 08:25:54 AM) Total M a r k s: 1
Sieve Technique applies to problems where we are interested in finding a single item from a larger set of \qquad
Select correct option:

n items

phases
pointers
constant

Question \# 10 of 10 (Start time: 08:26:44 AM) Total M a r k s: 1
The sieve technique works in \qquad as follows
Select correct option:
phases
numbers
integers
routines

Memorization is?
To store previous results for future use
To avoid this unnecessary repetitions by writing down the results of recursive calls and looking them up again if we need them later
To make the process accurate
None of the above

Question \# 2 of 10 Total M arks: 1
Which sorting algorithm is faster
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$
$0 n^{\wedge} 2$
$0(n+k)$
$0 n^{\wedge} 3$

Quick sort is

Made by

Muhammad Usama and DUA sister

Stable \& in place
Not stable but in place
Stable but not in place
Some time stable \& some times in place

One example of in place but not stable algorithm is
Merger Sort

Quick Sort

Continuation Sort
Bubble Sort

In Quick Sort Constants hidden in T($\mathrm{n} \log \mathrm{n}$) are
Large
Medium

Small

Not Known

Continuation sort is suitable to sort the elements in range 1 to k
K is Large
K is not known
K may be small or large
K is small

In stable sorting algorithm.
One array is used
More than one arrays are required
Duplicating elements not handled
duplicate elements remain in the same relative position after sorting

Which may be a stable sort?
Merger
Insertion
Both above
None of the above

An in place sorting algorithm is one that uses \qquad arrays for storage
Two dimensional arrays
More than one array
No Additional Array
None of the above

Continuing sort has time complexity of ?
O(n)

Made by

Muhammad Usama and DUA sister

$\mathrm{O}(\mathrm{n}+\mathrm{k})$
O(nlogn)
$\mathrm{O}(\mathrm{k})$
We do sorting to,
keep elements in random positions
keep the algorithm run in linear order
keep the algorithm run in $(\log n)$ order
keep elements in increasing or decreasing order

In Sieve Technique we donot know which item is of interest

True

False
A (an) \qquad is a left-complete binary tree that conforms to the heap order
heap
binary tree
binary search tree
array
27. The sieve technique works in \qquad as follows
phases
numbers
integers
routines

For the sieve technique we solve the problem,
recursively
mathematically
precisely
accurately
29. For the heap sort, access to nodes involves simple \qquad operations.
arithmetic
binary
algebraic
logarithmic

The analysis of Selection algorithm shows the total running time is indeed \qquad in n, \backslash
arithmetic

Muhammad Usama and DUA sister

geometric
linear
orthogonal
For the heap sort, access to nodes involves simple \qquad operations.
Select correct option:
arithmetic
binary
algebraic
logarithmic
Sieve Technique applies to problems where we are interested in finding a single item from a larger set of \qquad
Select correct option:

n items

phases
pointers
constant

Question \# 9 of 10 (Start time: 07:45:36 AM) Total Marks: 1
In Sieve Technique we do not know which item is of interest
Select correct option:
True
False

How much time merge sort takes for an array of numbers?
Select correct option:
$T\left(n^{\wedge} 2\right)$
T(n)
$T(\log n)$
$T(n \log n)$

For the heap sort we store the tree nodes in
Select correct option:
level-order traversal
in-order traversal
pre-order traversal
post-order traversal

Sorting is one of the few problems where provable \qquad bonds exits on how fast we can sort, Select correct option:

Made by

Muhammad Usama and DUA sister

upper
lower
average
$\log n$
single item from a larger set of \qquad
Select correct option:
n items
phases
pointers
constant

A heap is a left-complete binary tree that conforms to the \qquad
Select correct option:
increasing order only
decreasing order only
heap order
($\log \mathrm{n}$) order

In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
Select correct option:
T(n)
$T(n / 2)$
$\log n$
$\mathrm{n} / 2+\mathrm{n} / 4$

The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,
Select correct option:
divide-and-conquer
decrease and conquer
greedy nature
2-dimension Maxima

The sieve technique works in \qquad as follows
Select correct option:
phases
numbers
integers
routines
For the Sieve Technique we take time
Select correct option:
T(nk)

Muhammad Usama and DUA sister

T(n / 3)
$\mathrm{n}^{\wedge} 2$
n/3
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent \qquad series in the analysis,
linear
arithmetic
geometric
exponent
Analysis of Selection algorithm ends up with, Select correct option:
$T(n)$
$\mathrm{T}(1 / 1+\mathrm{n})$
$T(n / 2)$
$T((n / 2)+n)$
Quiz Start Time: 07:23 PM
Time Left 90
$\mathrm{sec}(\mathrm{s})$
Question \# 1 of 10 (Start time: 07:24:03 PM) Total M a rks: 1
In in-place sorting algorithm is one that uses arrays for storage :
Select correct option:
An additional array
No additional array
Both of above may be true according to algorithm
More than 3 arrays of one dimension.

Time Left 89
$\mathrm{sec}(\mathrm{s})$
Question \# 2 of 10 (Start time: 07:25:20 PM) Total M a r k s: 1
Which sorting algorithn is faster :
Select correct option:
$\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
O(nlogn)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
$\mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)$
In stable sorting algorithm:
Select correct option:
One array is used
In which duplicating elements are not handled.

Muhammad Usama and DUA sister

More then one arrays are required.
Duplicating elements remain in same relative posistion after sorting.

Counting sort has time complexity:
Select correct option:
O(n)
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
$\mathrm{O}(\mathrm{k})$
O(nlogn)

Counting sort is suitable to sort the elements in range 1 to k :
Select correct option:
K is large
K is small
K may be large or small
None

Memorization is :
Select correct option:
To store previous results for further use.
To avoid unnecessary repetitions by writing down the results of recursive calls and looking them again if needed later
To make the process accurate.
None of the above

The running time of quick sort depends heavily on the selection of Select correct option:
No of inputs
Arrangement of elements in array
Size o elements
Pivot elements

Which may be stable sort:
Select correct option:
Bubble sort
Insertion sort
Both of above

In Quick sort algorithm, constants hidden in $\mathrm{T}(\mathrm{n} \lg \mathrm{n})$ are Select correct option:

Muhammad Usama and DUA sister

Large
Medium
Not known
small

Quick sort is
Select correct option:
Stable and In place
Not stable but in place
Stable and not in place
Some time in place and send some time stable

For the Sieve Technique we take time
T(nk)
T(n/3)
$n^{\wedge} 2$
n/3

The sieve technique is a special case, where the number of sub problems is just Select correct option:

5
Many
1
Few

The reason for introducing Sieve Technique algorithm is that it illustrates a very important special case of,
Select correct option:
divide-and-conquer
decrease and conquer
greedy nature
2-dimension Maxima

Quick sort is
Select correct option:
Stable and In place
Not stable but in place
Stable and not in place
Some time in place and send some time stable

Made by

Muhammad Usama and DUA sister

Memoization is :
Select correct option:
To store previous results for further use.
To avoid unnecessary repetitions by writing down the results of
recursive calls and looking them again if needed later
To make the process accurate.
None of the above

One Example of in place but not stable sort is

Quick

Heap
Merge
Bubble

The running time of quick sort depends heavily on the selection of Select correct option:
No of inputs
Arrangement of elements in array
Size o elements
Pivot elements

Question \# 9 of 10 (Start time: 07:39:07 PM) Total M a rks: 1
In Quick sort algorithm, constants hidden in T(n $\lg n$) are
Select correct option:
Large
Medium
Not known
Small

Theta asymptotic notation for $\mathrm{T}(\mathrm{n})$:
Select correct option:
Set of functions described by: $\mathrm{c} 1 \mathrm{~g}(\mathrm{n})<=\mathrm{f}(\mathrm{n})$ for c 1 some constant and $\mathrm{n}=\mathrm{n} 0$
Set of functions described by $c 1 g(n)>=f(n)$ for $c 1$ some constant and $n=n 0$
Theta for $\mathrm{T}(\mathrm{n})$ is actually upper and worst case complexity of the code
Set of functions described by: $\mathrm{c} 1 \mathrm{~g}(\mathrm{n})<=\mathrm{f}(\mathrm{n})<=\mathrm{c} 2 \mathrm{~g}(\mathrm{n})$ for c 1 and c 2 some constants and $\mathrm{n}=\mathrm{nO}$

