Calculus \& Analytical Geometry-I

Time: 120 min
Marks: 80

Question No: 1 (Marks: 1) - Please choose one
If f is a twice differentiable function at a stationary point x_{0} and $f^{\prime \prime}\left(x_{0}\right)>0$ then f has relative At ${ }^{x_{0}}$

- Minima
- Maxima
- None of these

Question No: 2 (Marks: 1) - Please choose one
In the notation
$\int f(x) d x=F(x)+C$

$$
\mathrm{C} \text { represents }
$$

- A polynomial
- A Constant
- A Variable
- None of these

Question No: 3 (Marks: 1) - Please choose one
According to Power-Rule of differentiation, if $f(x)=x^{n}$ where ${ }^{n}$ is a real number, then $\frac{d}{d x}\left[x^{n}\right]=$

$n x^{n+1}$

- $(n-1) x^{n+1}$

Question No: 4 (Marks: 1) - Please choose one

Question No: 5 (Marks: 1) - Please choose one
$30^{0}=$

$$
\begin{aligned}
& \frac{\pi}{3} \\
& \frac{\pi}{4} \\
& \frac{\pi}{6} \\
& \frac{\pi}{2}
\end{aligned}
$$

Question No: 6 (Marks: 1) - Please choose one
If a function g is differentiable at a point x and a function f is differentiable at a point $g(x)$, then the \qquad is differentiable at point x.

```
- Composition (f o g)
- Quotient (f/g)
- Product (f.g)
Sum (f+g)
```

Question No: 7 (Marks: 1) - Please choose one
Let a function ${ }^{f}$ be defined on an interval, and let ${ }^{x_{1}}$ and x_{2} denote points in that
interval. If $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$ then which of the following statement is correct?

- f is an increasing function.
- f is a decreasing function.
- f is a constant function.

Question No: 8 (Marks: 1) - Please choose one
If $f^{\prime \prime}(x)<0$ on an open interval (a,b) then which of the following statement is correct?
$-f$ is concave up on (a, b).

- f is concave down on (a, b)
- f is linear on (a, b).

Question No: 9 (Marks: 1) - Please choose one

$$
\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}
$$

The sum
is known as:

Riemann Sum

- General Sum
- Integral Sum
- Geometric Sum

Question No: 10 (Marks: 1) - Please choose one

$$
\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}
$$

What does ' n ' represent in Riemann Sum

- No. of Circles
- No. of Rectangles
- No. of Loops
- No. of Squares

Question No: 11 (Marks: 1) - Please choose one
What is the area of the region in the following figure?

$A=\int_{x}^{2}\left[(x+6)-\left(x^{2}\right)\right] d x$

$$
A=\int_{0}^{2}\left[(x+6)+\left(x^{2}\right)\right] d x
$$

$$
A=\int_{0}^{x}\left[(x+6)-\left(x^{2}\right)\right] d x
$$

Question No: 12 (Marks: 1) - Please choose one
If $\int_{1}^{4} f(x) d x=2 \int_{\text {and }}^{4} g(x) d x=10$ then which of the following is value of $\int_{1}^{4}[3 f(x)-g(x)] d x$?

- 16
- 12
- -4
- -8

Question No: 13 (Marks: 1) - Please choose one

$$
\int_{0}^{1} 2 x\left(x^{2}+4\right) d x=
$$

Question No: 14 (Marks: 1) - Please choose one
Let f is a smooth function on [0,3]. What will be the arc length L of the curve $y=f(x)$ from

$$
\mathrm{x}=0 \text { to } \mathrm{x}=3 \text { ? }
$$

$$
L=\int_{0}^{3} \sqrt{1+[f(x)]^{2}} d y
$$

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}}
$$

$$
L=\int_{0}^{3} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d y
$$

Question No: 15 (Marks: 1) - Please choose one
Let f be a smooth, nonnegative function on $[1,3]$. What is the surface area S generated by revolving the portion of the curve $y=f(x)$ between $x=1$ and $x=3$ about the x-axis?

$$
S=\int_{0}^{2} 2 \sqrt{1+[f(x)]} d x
$$

$$
S=\int_{0}^{3} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]} d x
$$

$$
S=\int_{0}^{2} 2 \sqrt{1+\left[f^{\prime}(x)\right]} d x
$$

Question No: 16 (Marks: 1) - Please choose one
Let an object is displaced 2 m by a force of 2 N . What is the work done W ?

Question No: 17 (Marks: 1) - Please choose one

$$
\int_{a}^{+\infty} f(x) d x=\lim _{l \rightarrow \infty} \int_{\alpha}^{l} f(x) d x
$$

Consider the improper integral
if the limit exists then which of the following can be occured?

- Diverges
- Converges
- Test fail

Question No: 18 (Marks: 1) - Please choose one

If f is continuous on (a, b] but does not have a limit from the right then the integral

$$
\int_{a}^{b} f(x) d x=\lim _{l \rightarrow a} \int_{l}^{b} f(x) d x
$$

defined by is called :

Improper

Proper

- Line

Question No: 19 (Marks: 1) - Please choose one
$\left\{a_{n}\right\} \quad a_{n+1}-a_{n}<0$
For a sequence \quad if the difference between successive terms a_{n+1} then the sequence is known as :

Increasing

- Decreasing
- Nondecreasing
- Nonincreasing

Question No: 20 (Marks: 1) - Please choose one

$$
\frac{a_{n+1}}{a_{n}}>1
$$

For a sequence ${ }^{\left\{a_{n}\right\}}$ if the ratio of successive terms then the sequence is known as:

Increasing

- Decreasing
- Nondecreasing
- Nonincreasing

Question No: 21 (Marks: 1) - Please choose one

Which of the following is true for the sequence $\{n\}_{n=0}^{\infty}$?

Nonincreasing

- Nondecreasing
- Increasing
- Decreasing

Question No: 22 (Marks: 1) - Please choose one
$f(n)=a$
is the nth term of the sequence and f is differentiable and
If is the
will be :

- Increasing
- Decreasing
- Nondecreasing

Nonincreasing
Question No: 23 (Marks: 1) - Please choose one
If Newton's Method is used to approximate the real solutions of the equation $x^{3}+x-3=0$ and the first guess $x_{1}=1$, What is x_{2} ?

Question No: 24 (Marks: 1) - Please choose one
Suppose that we apply Newton's Method to approximate the real solutions of the equation $x^{3}-2 x^{2}-1=0$. If we start at $x_{1}=2$, then which of the following is value of x_{2} ?

- 6
- 2.25
- 0
- 2

Question No: 25 (Marks: 1) - Please choose one
If the sequence of partial sum of a series converges then what will the series show itself ?
Diverges

- Converges
- Gives no information

Question No: 26 (Marks: 1) - Please choose one
$\sum u_{k}$ be a series with positive terms and suppose that

$$
\rho=\lim _{k \rightarrow \infty} \frac{u_{k+1}}{u_{k}}
$$

The series if $\rho>1$, then which of the following is true?

- Converges
- Diverges
- May converges or diverges
- Gives no information

Question No: 27 (Marks: 1) - Please choose one
$\sum u_{k} \quad{ }_{k \rightarrow \infty} u_{k}$
The series be a series with positive terms and suppose that

$$
\rho=\lim _{k \rightarrow \infty} \frac{u_{k+1}}{u_{k}}
$$

$\rho=1$
, then which of the following is true?

- Converges
- Diverges
- May converges or diverges
- Gives no information

Question No: 28 (Marks: 1) - Please choose one
$\sum u_{k}$
be a series with positive terms and suppose that
$\rho=\lim _{k \rightarrow \infty} \sqrt[k]{u_{k}}=\lim _{k \rightarrow \infty}\left(u_{k}\right)^{\frac{1}{k}}$
if $\rho=1$, then which of the following is true?

Converges

- Diverges
- May converges or diverges

Gives no information
Question No: 29 (Marks: 1) - Please choose one
For an alternating series to be convergent which of the following condition must be satisfied?

Question No: 30 (Marks: 1) - Please choose one
For an alternating series to be convergent which of the following condition must be satisfied?

$$
\begin{aligned}
& a_{1} \geq a_{2} \geq a_{3} \ldots \ldots \geq a_{k} \geq \ldots \\
& \lim _{k \rightarrow \infty} a_{k}=0 \\
& a_{1} \leq a_{2} \leq a_{3} \ldots \ldots \leq a_{k} \leq \ldots \\
& \lim _{k \rightarrow \infty} a_{k}=1
\end{aligned}
$$

Question No: 31 (Marks: 1) - Please choose one

What is the base of natural logarithm?
> 2.71
10

- 5
- Any real number

Question No: 32 (Marks: 1) - Please choose one
A function F is called an antiderivative of a function f

$F(x)$
$f^{\prime}(x)$
$f^{\prime \prime}(x)$

Question No: 33 (Marks: 1) - Please choose one

$$
\log _{b} a c=
$$

$$
\begin{aligned}
& \log _{b} a+\log _{b} c \\
& \log _{b} a-\log _{b} c \\
& \frac{\log _{b} a}{\log _{b} c} \\
& \left(\log _{b} a\right)\left(\log _{b} c\right)
\end{aligned}
$$

Question No: 34 (Marks: 1) - Please choose one

$$
\log _{b} a^{r}=
$$

\qquad

```
    \(a \log _{b} r\)
    \(r \log _{b} a\)
    \(\frac{\log _{b} a}{\log _{b} r}\)
\(-\log _{b} a+\log _{b} r\)
```

Question No: 35 (Marks: 1) - Please choose one
\qquad
$\log _{b} c$
$1-\log _{b} c$
$-\log _{b} c$

- $1+\log _{b} c$

Question No: 36 (Marks: 1) - Please choose one $\log _{b} \frac{1}{t}=$
$\log _{b} t$
$1-\log _{b} t$
$1+\log _{b} t$
$-\log _{b} t$
Question No: 37 (Marks: 1) - Please choose one
What is the sum of following series?
$1^{2}+2^{2}+3^{2}+4^{2}+_{------}+n^{2}$
$\frac{n(n+1)(2 n+1)}{6}$
$\frac{n(2 n)(2 n+1)}{6}$
$\frac{(n+1)(n+2)}{2}$
$\frac{(n+1)(2 n+1)}{6}$

Question No: 38 (Marks: 1) - Please choose one
$\sum_{k=1}^{n} \frac{k^{3}}{2}=$

```
    n(n+1)
    [n(n+1)]}\mp@subsup{]}{}{2
        8
    n(n+1)(2n+1)
```

Question No: 39 (Marks: 1) - Please choose one

$$
y=\frac{2 \sqrt{2}}{3} x^{\frac{3}{2}}-2 x ; 0 \leq x \leq 1
$$

Let then which of the following is the length of the curve?

$$
L=\int_{0}^{1} \sqrt{1+\left[\left(\frac{2 \sqrt{2}}{3} x^{\frac{3}{2}}-2 x\right)\right]^{2} d x}
$$

$$
L=\int_{0}^{1} \sqrt{\left[\frac{d}{d x}\left(\frac{2 \sqrt{2}}{3} x^{\frac{3}{2}}-2 x\right)\right]^{2} d x}
$$

$$
L=\int \sqrt{1+\left[\frac{d}{d x}\left(\frac{2 \sqrt{2}}{3} x^{\frac{3}{2}}-2 x\right)\right]^{2} d x}
$$

Question No: 40 (Marks: 1) - Please choose one
If $f(x)=e^{-x}$ at $x=0$ be the Taylor series, then which of the following is also true?
Arithmetic series

- Maclaurin series
- Geometric series
- Harmonic series

Question No: 41 (Marks: 2)

$$
u=\frac{\pi}{2}-x \quad \int_{0}^{\pi} \sin \left(\frac{\pi}{2}-x\right) d x
$$

Using substitution

Question No: 42 (Marks: 2)

$$
\int_{3}^{+\infty} \frac{d x}{2 x^{2}}
$$

Evaluate the improper integral

Question No: 43 (Marks: 2)
A function $f(x)=6-2 x-x^{2}$ has critical point 1 in an interval [-4, 3]. Find the absolute minimum value of the function.

Question No: 44 (Marks: 3)
Find the absolute maximum value of the function:
$f(x)=2 x^{3}+3 x^{2}-12 x+4 \quad$ on $\quad[-4,2]$

Question No: 45 (Marks: 3)

Find the area of the region bounded by the curve $e^{y=x^{2}-4 x-5}$ and $\begin{aligned} & y=x+1 \\ & \text { (do not }\end{aligned}$ evaluate).

Question No: 46 (Marks: 3)

$$
\left\{\frac{3}{n^{2}}\right\}_{n=5}^{\infty}
$$

Determine whether the following sequence is strictly monotone:

Question No: 47 (Marks: 5)

Determine whether the sequence converges or diverges. If converges find limit

$$
\lim _{n \rightarrow \infty} \frac{3^{n}+(-1)^{n}}{3^{n+1}+(-1)^{n+1}}
$$

Question No: 48 (Marks: 5)
Find the lengths of the curves
$x=\frac{t^{2}}{2}, \quad y=\frac{(2 t+1)^{\frac{3}{2}}}{3}, 0 \leq t \leq 4$

Question No: 49 (Marks: 5)

$$
\int\left[\left(x^{4}+2\right)\right]\left[\cos \left(x^{5}+10 x\right)\right] d x \quad \text { by substitution method. }
$$

Question No: 50 (Marks: 10)
Find the Maclaurin series for $f(x)=e^{2 x}$

